(2010•泉州)如圖所示,已知拋物線的圖象與y軸相交于點(diǎn)B(0,1),點(diǎn)C(m,n)在該拋物線圖象上,且以BC為直徑的⊙M恰好經(jīng)過頂點(diǎn)A.
(1)求k的值;
(2)求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P的縱坐標(biāo)為t,且點(diǎn)P在該拋物線的對稱軸l上運(yùn)動(dòng),試探索:
①當(dāng)S1<S<S2時(shí),求t的取值范圍(其中:S為△PAB的面積,S1為△OAB的面積,S2為四邊形OACB的面積);
②當(dāng)t取何值時(shí),點(diǎn)P在⊙M上.(寫出t的值即可)

【答案】分析:(1)由于拋物線的圖象經(jīng)過點(diǎn)B,那么點(diǎn)B的坐標(biāo)滿足該拋物線的解析式,將其代入即可求得k的值.
(2)若⊙M經(jīng)過點(diǎn)A,則∠BAC必為直角(圓周角定理),過C作x軸的垂線,設(shè)垂足為D,那么△BAO∽△ACD,可設(shè)出點(diǎn)C的坐標(biāo),根據(jù)相似三角形所得比例線段,即可得到點(diǎn)C橫、縱坐標(biāo)的關(guān)系式,聯(lián)立拋物線的解析式即可求得C點(diǎn)的坐標(biāo).
(3)①由于O、A、B、C四點(diǎn)的坐標(biāo)已經(jīng)確定,所以S1、S2都可求出,△ABP中,以|t|為底,B點(diǎn)橫坐標(biāo)為高,即可得到S,即S=|t|××2=|t|,因此S1<|t|<S2,將S1、S2的值代入上式,然后求出t的取值范圍.(注意t應(yīng)該分正、負(fù)兩種情況考慮)
②若P在⊙M上,∠BPC=90°,即△BPC是直角三角形,可用坐標(biāo)系兩點(diǎn)間的距離公式求出△BPC的三邊長,然后利用勾股定理求出t的值.
解答:解:(1)∵點(diǎn)B(0,1)在的圖象上,
,(2分)
∴k=1.(3分)

(2)由(1)知拋物線為:
,
∴頂點(diǎn)A為(2,0),(4分)
∴OA=2,OB=1;
過C(m,n)作CD⊥x軸于D,則CD=n,OD=m,
∴AD=m-2,
由已知得∠BAC=90°,(5分)
∴∠CAD+∠BAO=90°,又∠BAO+∠OBA=90°,
∴∠OBA=∠CAD,
∴Rt△OAB∽R(shí)t△DCA,
=,即=(或tan∠OBA=tan∠CAD,,即),(6分)
∴n=2(m-2);
又∵點(diǎn)C(m,n)在上,
,
,
即8(m-2)(m-10)=0,
∴m=2或m=10;當(dāng)m=2時(shí),n=0,當(dāng)m=10時(shí),n=16;(7分)
∴符合條件的點(diǎn)C的坐標(biāo)為(2,0)或(10,16).(8分)

(3)①依題意得,點(diǎn)C(2,0)不符合條件,
∴點(diǎn)C為(10,16)
此時(shí),
S2=SBODC-S△ACD=21;(9分)
又∵點(diǎn)P在函數(shù)圖象的對稱軸x=2上,
∴P(2,t),AP=|t|,
=|t|(10分)
∵S1<S<S2,
∴當(dāng)t≥0時(shí),S=t,
∴1<t<21.(11分)
∴當(dāng)t<0時(shí),S=-t,
∴-21<t<-1
∴t的取值范圍是:1<t<21或-21<t<-1(12分)
②t=0,1,17(14分)
點(diǎn)評:此題考查了二次函數(shù)解析式的確定、圓周角定理、圖形面積的求法、不等式以及相似三角形的性質(zhì)等相關(guān)知識(shí),綜合性強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•泉州)如圖所示,已知拋物線的圖象與y軸相交于點(diǎn)B(0,1),點(diǎn)C(m,n)在該拋物線圖象上,且以BC為直徑的⊙M恰好經(jīng)過頂點(diǎn)A.
(1)求k的值;
(2)求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P的縱坐標(biāo)為t,且點(diǎn)P在該拋物線的對稱軸l上運(yùn)動(dòng),試探索:
①當(dāng)S1<S<S2時(shí),求t的取值范圍(其中:S為△PAB的面積,S1為△OAB的面積,S2為四邊形OACB的面積);
②當(dāng)t取何值時(shí),點(diǎn)P在⊙M上.(寫出t的值即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

(2010•泉州)如圖,在梯形ABCD中,∠A=∠B=90°,AB=,點(diǎn)E在AB上,∠AED=45°,DE=6,CE=7.求:AE的長及sin∠BCE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2010•泉州)如圖所示,在折紙活動(dòng)中,小明制作了一張△ABC紙片,點(diǎn)D,E分別是邊AB、AC上,將△ABC沿著DE重疊壓平,A與A'重合,若∠A=70°,則∠1+∠2=( )

A.140°
B.130°
C.110°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•泉州)如圖,點(diǎn)A,B,C,在⊙O上,∠A=45°,則∠BOC=    度.

查看答案和解析>>

同步練習(xí)冊答案