某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系式如圖所示.
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)當(dāng)生產(chǎn)這種產(chǎn)品的總成本為280萬元時,求該產(chǎn)品的生產(chǎn)數(shù)量.
(注:總成本=每噸的成本×生產(chǎn)數(shù)量)

【答案】分析:(1)利用待定系數(shù)法求出一次函數(shù)解析式即可,根據(jù)當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過50噸時,得出x的定義域;
(2)根據(jù)總成本=每噸的成本×生產(chǎn)數(shù)量,利用(1)中所求得出即可.
解答:解:(1)利用圖象設(shè)y關(guān)于x的函數(shù)解析式為y=kx+b,
將(10,10)(50,6)代入解析式得:
,
解得:,
y=-x+11(10≤x≤50)

(2)當(dāng)生產(chǎn)這種產(chǎn)品的總成本為280萬元時,
x(-x+11)=280,
解得:x1=40,x2=70(不合題意舍去),
故該產(chǎn)品的生產(chǎn)數(shù)量為40噸.
點評:此題主要考查了一次函數(shù)的應(yīng)用,根據(jù)總成本=每噸的成本×生產(chǎn)數(shù)量得出等式方程求出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種產(chǎn)品,若10天中每天生產(chǎn)的次品數(shù)分別為2,3,1,1,10,2,1,1,0,1,則這個樣本的方差是(  )
A、7.36B、0.504C、2.75D、0.572

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•上海)某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系式如圖所示.
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)當(dāng)生產(chǎn)這種產(chǎn)品的總成本為280萬元時,求該產(chǎn)品的生產(chǎn)數(shù)量.
(注:總成本=每噸的成本×生產(chǎn)數(shù)量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系式如圖所示.
(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(2)當(dāng)生產(chǎn)這種產(chǎn)品的總成本為280萬元時,求該產(chǎn)品的生產(chǎn)數(shù)量;(注:總成本=每噸的成本×生產(chǎn)數(shù)量)
(3)當(dāng)產(chǎn)品的生產(chǎn)數(shù)量為多少時,總成本最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系式如圖所示.
(1)求y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;
(2)當(dāng)每噸成本為9萬元時,求該產(chǎn)品的生產(chǎn)數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)一種產(chǎn)品,成本為30元/件,銷售方式:
①直銷,售價50元/件,每月開銷4500元;
②批發(fā)40元/件,兩種方式均需繳納銷售金額的10%稅款.
(1)若采用方式1,每月要銷多少件才不虧本?
(2)每月銷售多少件時采用兩種方式的利潤相同?

查看答案和解析>>

同步練習(xí)冊答案