【題目】如圖,在ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別在CD,AB的延長(zhǎng)線(xiàn)上,且AE=AD,CF=CB.
(1)求證:四邊形AFCE是平行四邊形;
(2)若去掉已知條件“∠DAB=∠60°”,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)寫(xiě)出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴DC∥AB,∠DCB=∠DAB=60°.
∴∠ADE=∠CBF=60°.
∵AE=AD,CF=CB,
∴△AED,△CFB是正三角形.
∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.
∴四邊形AFCE是平行四邊形
(2)解:上述結(jié)論還成立.
證明:∵四邊形ABCD是平行四邊形,
∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.
∴∠ADE=∠CBF.
∵AE=AD,CF=CB,
∴∠AED=∠ADE,∠CFB=∠CBF.
∴∠AED=∠CFB.
又∵AD=BC,
在△ADE和△CBF中.
,
∴△ADE≌△CBF(AAS).
∴∠AED=∠BFC,∠EAD=∠FCB.
又∵∠DAB=∠BCD,
∴∠EAF=∠FCE.
∴四邊形EAFC是平行四邊形.
【解析】(1)由已知條件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四邊形AFCE是平行四邊形.(2)上述結(jié)論還成立,可以證明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四邊形AFCE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng).
(1)求拋物線(xiàn)的解析式,并直接寫(xiě)出點(diǎn)D的坐標(biāo);
(2)如圖1,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿A→B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng).以AP為邊作等邊△APQ(點(diǎn)Q在x軸上方).設(shè)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,△APQ與四邊形AOCD重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,連接AC,在第二象限內(nèi)存在點(diǎn)M,使得以M、O、A為頂點(diǎn)的三角形與△AOC相似.請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在函數(shù)y=x-1的圖象上的點(diǎn)是()
A.(0,-1)B.(0,0)C.(0,1)D.(-1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( 。
A. 對(duì)頂角相等 B. 兩點(diǎn)之間所有連線(xiàn)中,線(xiàn)段最短
C. 等角的補(bǔ)角相等 D. 過(guò)任意一點(diǎn)P,都能畫(huà)一條直線(xiàn)與已知直線(xiàn)平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種出租車(chē)的收費(fèi)標(biāo)準(zhǔn):起步價(jià)7元(即行駛距離不超過(guò)3千米都需付7元車(chē)費(fèi)),超過(guò)3千米后,每增加1千米,加收2.4元(不足1千米按1千米計(jì)).某人乘這種出租車(chē)從甲地到乙地共付車(chē)費(fèi)19元,那么甲地到乙地路程的最大值是( )
A.5千米
B.7千米
C.8千米
D.15千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要了解八年級(jí)學(xué)生身高在某一范圍內(nèi)學(xué)生所占比例,需知道相應(yīng)的( )
A.平均數(shù) B.眾數(shù) C.中位數(shù) D.頻數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)積極相應(yīng)政府號(hào)召,今年提出如下目標(biāo),和去年相比,在產(chǎn)品的出廠(chǎng)價(jià)增加10%的前提下,將產(chǎn)品成本降低20%,使產(chǎn)品利潤(rùn)率(利潤(rùn)率=×100%)較去年翻一番.則今年該企業(yè)產(chǎn)品利潤(rùn)率為( )
A. 40% B. 80% C. 120% D. 160%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,∠ACB=25°,現(xiàn)將ABCD沿EF折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)D落在G處,則∠GFE的度數(shù)( )
A.135°
B.120°
C.115°
D.100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點(diǎn)E、F,AE、BF相交于點(diǎn)M.
(1)試說(shuō)明:AE⊥BF;
(2)判斷線(xiàn)段DF與CE的大小關(guān)系,并予以說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com