如圖△DAC和△ECB均為等邊三角形,AE,BD分別與CD,CE交于點(diǎn)M,N,有如下結(jié)論,其中正確的個數(shù)是
①△ACE≌△DCB;②CM=CN;③AM=DN.


  1. A.
    3個
  2. B.
    2個
  3. C.
    1個
  4. D.
    0個
A
分析:根據(jù)等邊三角形性質(zhì)求出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根據(jù)SAS證△ACE≌△DCB即可;由全等推出∠CAM=∠CDN,根據(jù)ASA證△ACM≌△DCN即可.
解答:∵△DAC和△ECB均為等邊三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠DCE=180°-60°-6°=60°=∠ACD,
∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠BCD,
∵在△ACE和△DCB中
,
∴△ACE≌△DCB,
∴∠CAM=∠CDN,
∵在△ACM和△DCN中
,
∴△ACM≌△DCN,
∴CM=CN,AM=DN,
∴①②③都正確;
故選A.
點(diǎn)評:本題考查了全等三角形的性質(zhì)和判定,等邊三角形的性質(zhì)的應(yīng)用,主要考查了學(xué)生的推理能力,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知Rt△ABC和Rt△EBC,∠B=90°.以邊AC上的點(diǎn)O為圓心、OA為半徑的⊙O與EC精英家教網(wǎng)相切,D為切點(diǎn),AD∥BC.
(1)用尺規(guī)確定并標(biāo)出圓心O;(不寫作法和證明,保留作圖痕跡)
(2)求證:∠E=∠ACB;
(3)若AD=1,tan∠DAC=
2
2
,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)如圖,點(diǎn)C在線段AB上,△DAC和△DBE都是等邊三角形.
(1)求證:△DAB≌△DCE;
(2)求證:DA∥EC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•團(tuán)風(fēng)縣模擬)如圖,點(diǎn)C在線段AB上,△DAC和△DBE都是等邊三角形,求證:DA∥EC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

31、如圖,△ACD和△ABE都是直角等腰三角形,∠DAC和∠EAB是直角,連接CE.
(1)在圖上畫出△ACE以點(diǎn)A為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°后得到的△AC'E'(只需作出圖形;不寫畫法);
(2)猜想EC與C'E'的位置有什么關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆北京四中九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系.設(shè)該圓弧所在圓的圓心為點(diǎn)D,連結(jié)AD、CD.
請完成下列問題:

(1)出點(diǎn)D的坐標(biāo):D___________;
(2)D的半徑=_____(結(jié)果保留根號);
(3)若扇形DAC是一個圓錐的側(cè)面展開圖,則該圓錐的底面面積為__________(結(jié)果保留π);
(4)若E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案