【題目】一個不透明的布袋里裝有2個白球,1個黑球和若干個紅球,它們除顏色外其余都相同,從中任意摸出1個球,是白球的概率為 。
(1)布袋里紅球有多少個?
(2)先從布袋中摸出1個球后不放回,再摸出1個球,請用列表或畫樹狀圖等方法求出兩次摸到的球都是白球的概率。
【答案】
(1)解:設(shè)有紅球 個,由題意可得; ,解得 ,即布袋中紅球有1個;
(2)解:畫樹狀圖如下:一共有12種等可能情況,其中兩次都摸到白球的有2次,
∴ P(兩次都是白球)= .
【解析】根據(jù)白球的概率=,建立方程求解即可。
(2)抓住已知摸出1個球后不放回,再摸出1個球,列出樹狀圖,求出所有等可能的結(jié)果數(shù),再求出兩次都摸到白球的可能數(shù),利用概率公式求出結(jié)果。
【考點精析】掌握列表法與樹狀圖法和概率公式是解答本題的根本,需要知道當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC,BD相交于點O,OB=OD,BD=CD,∠BAC=∠BDC=90°.
(1)填空:∠ABD=∠ ;
(2)求的值;
(3)點D關(guān)于直線BC的對稱點為N,連接AN,請補全圖形,探究線段AN,AD有怎樣的關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的做法是這樣的:如圖.
(1)在的內(nèi)部任取一個點E,過點E作EM⊥OB;
(2)在邊上取一點N,作NF⊥OA于點N,且NF=EM;
(3)過點E作直線l1∥OB,過點F作直線l2∥OA,l1 與l2交于點;
(4)畫射線.
則射線為的平分線.
根據(jù)小明的畫法回答下面的問題:
(1)小明作l1∥OB,l2∥OA的目的是___________________________________________;
(2)l1 與l2交于點,則射線為的平分線的依據(jù)是__________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A在拋物線y=x2﹣2x+4上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中生在數(shù)學(xué)運算中使用計算器的現(xiàn)象越來越普遍,某校一興趣小組隨機抽查了本校若干名學(xué)生使用計算器的情況.以下是根據(jù)抽查結(jié)果繪制出的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
請根據(jù)上述統(tǒng)計圖提供的信息,完成下列問題:
(1)這次抽查的樣本容量是;
(2)請補全上述條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)若從這次接受調(diào)查的學(xué)生中,隨機抽查一名學(xué)生恰好是“不常用”計算器的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,DC=5 cm,在DC上存在一點E,沿直線AE把△AED折疊,使點D恰好落在BC邊上,設(shè)落點為F,若△ABF的面積為30 cm2,求△ADE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com