如下圖,已知,將等邊△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)70°得到△ADE,連結(jié)BD、CE.

(1)求證BD=CE;

(2)求∠ECD的度數(shù).

(3)若將等邊△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)80°或90°得到△ADE,試問:第(2)問中的結(jié)論還成立嗎?(不要求證明).

答案:
解析:

  (1)略

  (2)∠ECD=30o

  (3)成立


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,可以說明:△ACN≌△MCB,從而得到結(jié)論:AN=BM.
現(xiàn)要求:
(1)將△ACM繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)180°,使A點(diǎn)落在CB上.請對照原題圖在下圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡);
(2)在(1)所得到的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請給予證明;若不成立,請說明理由;
(3)在(1)所得到的圖形中,設(shè)MA的延長線與BN相交于D點(diǎn),請你判斷△ABD與四邊形MDNC的形狀,并說明你的結(jié)論的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖①,點(diǎn)C為線段AB上一點(diǎn),△ACM和△CBN都是等邊三角形,AN,BM交于點(diǎn)P,則△BCM≌△NCA,易證結(jié)論:①BM=AN.
(1)請寫出除①外的兩個(gè)結(jié)論:②
∠MBC=∠ANC
∠MBC=∠ANC
;③
∠BMC=∠NAC
∠BMC=∠NAC

(2)將△ACM繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)180°,使點(diǎn)A落在BC上.請對照原題圖形在圖②畫出符合要求的圖形.(不寫作法,保留作圖痕跡)
(3)在(2)所得到的下圖②中,探究“AN=BM”這一結(jié)論是否成立.若成立,請證明:若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如下圖所示,在等邊△ABC和等邊△ADE中,點(diǎn)B、A、D在一條直線上,BE、CD交于F.
(1)求證:△BAE≌△CAD.
(2)求∠BFC的大。
(3)在圖1的基礎(chǔ)上,將△ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)180°,此時(shí)BE交CD的延長線于點(diǎn)F,其他條件不變,得到圖2所示的圖形,請直接寫出(1)、(2)中結(jié)論是否仍然成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東佛山南海桂城街道九年級上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,可以說明:△ACN≌△MCB,從而得到結(jié)論:AN=BM.現(xiàn)要求:

(1)將△ACM繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)180°,使A點(diǎn)落在CB上.請對照原題圖在下圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡).

(2)在(1)所得到的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請給予證明;若不成立,請說明理由.

(3)在(1)所得到的圖形中,設(shè)MA的延長線與BN相交于D點(diǎn),請你判斷△ABD與四邊形MDNC的形狀,并說明你的結(jié)論的正確性.

 

查看答案和解析>>

同步練習(xí)冊答案