【題目】一個(gè)多邊形的內(nèi)角和為540°,則這個(gè)多邊形的邊數(shù)是

【答案】5

【解析】

試題分析:設(shè)這個(gè)多邊形的邊數(shù)是n,則(n﹣2)180°=540°,解得n=5,故答案為:5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線(xiàn)的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線(xiàn)的一部分C2組合成一條封閉曲線(xiàn),我們把這條封閉曲線(xiàn)稱(chēng)為“蛋線(xiàn)”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線(xiàn)C2<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

2)當(dāng)BDM為直角三角形時(shí),求的值.

3)“蛋線(xiàn)”在第四象限上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,BD是O的直徑,AECD于點(diǎn)E,DA平分BDE.

(1)求證:AE是O的切線(xiàn);

(2)如果AB=4,AE=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程kx2+2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC為等腰直角三角形,ACB=90°,AC=BC=2,P為線(xiàn)段AB上一動(dòng)點(diǎn),D為BC上中點(diǎn),則PC+PD的最小值為( )

A. B.3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我縣某汽車(chē)銷(xiāo)售公司經(jīng)銷(xiāo)某品牌A款汽車(chē),隨著汽車(chē)的普及,其價(jià)格也在不斷下降,今年5月份A款汽車(chē)的售價(jià)比去年同期每輛降價(jià)1萬(wàn)元,如果賣(mài)出相同數(shù)量的A款汽車(chē),去年銷(xiāo)售額為100萬(wàn)元,今年銷(xiāo)售額只有90萬(wàn)元.

(1)今年5月份A款汽車(chē)每輛售價(jià)多少萬(wàn)元?

(2)為了增加收入,汽車(chē)銷(xiāo)售公司決定再經(jīng)銷(xiāo)同品牌的B款汽車(chē),已知A款汽車(chē)每輛進(jìn)價(jià)7.5萬(wàn)元,B款汽車(chē)每輛進(jìn)價(jià)為6萬(wàn)元,公司預(yù)計(jì)用不多于105萬(wàn)元且不少于99萬(wàn)元的資金購(gòu)進(jìn)這兩款汽車(chē)共15輛,有幾種進(jìn)貨方案?

(3)如果B款汽車(chē)每輛售價(jià)為8萬(wàn)元,為打開(kāi)B款汽車(chē)的銷(xiāo)路,公司決定每售出一輛B款汽車(chē),返還顧客現(xiàn)金a萬(wàn)元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時(shí),哪種方案對(duì)公司更有利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于有理數(shù)a,b,定義a⊙b=3a+2b,則(x+y)⊙(x-y)化簡(jiǎn)后得_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多項(xiàng)式3x2yxy3+5xy﹣1是一個(gè)( )

A. 四次三項(xiàng)式 B. 三次三項(xiàng)式 C. 四次四項(xiàng)式 D. 三次四項(xiàng)式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l平行x軸,交y軸于點(diǎn)A,第一象限內(nèi)的點(diǎn)B在l上,連結(jié)OB,動(dòng)點(diǎn)P滿(mǎn)足APQ=90°,PQ交x軸于點(diǎn)C.

(1)當(dāng)動(dòng)點(diǎn)P與點(diǎn)B重合時(shí),若點(diǎn)B的坐標(biāo)是(2,1),求PA的長(zhǎng).

(2)當(dāng)動(dòng)點(diǎn)P在線(xiàn)段OB的延長(zhǎng)線(xiàn)上時(shí),若點(diǎn)A的縱坐標(biāo)與點(diǎn)B的橫坐標(biāo)相等,求PA:PC的值.

(3)在(2)的條件下,已知AB=3,OB:BP=3:1,求四邊形AOCP的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案