已知直線AB、CD相交于點(diǎn)O.

(1)OE、OF分別是∠AOC,∠BOD的平分線,畫出這個(gè)圖形;

(2)射線OE、OF在同一條直線上嗎?為什么?

(3)畫∠AOD的平分線OG,OE與OG垂直嗎?為什么?

答案:
解析:

  (1)如圖所示

  (2)射線OE、OF在同一條直線上.

  ∵∠AOC=∠BOD(對(duì)頂角相等)

  ∠AOE=∠AOC,∠BOF=∠BOD(角平分線定義)

  ∴∠AOE=∠BOF

  ∵∠AOE+∠EOB=180°(鄰補(bǔ)角定義)

  ∴∠EOB+∠BOF=180°

  即∠EOF=180°,OE與OG垂直

  (3)∵由(2)知∠AOE=∠AOC

  ∠GOA=∠DOA(角平分線定義)

  ∠AOC+∠DOA=∠DOC=180°

  ∴∠GOE=AOE+∠GOA=∠AOC+∠DOA=(∠AOC+∠DOA)=90°

  ∴OE⊥OG.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為⊙O內(nèi)垂直于直徑的弦,AB、CD相于點(diǎn)H,△AED與△AHD關(guān)于直線AD成軸對(duì)稱.
(1)試說(shuō)明:AE為⊙O的切線;
(2)延長(zhǎng)AE與CD交于點(diǎn)P,已知PA=2,PD=1,求⊙O的半徑和DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

.(9分)如圖,AB為⊙O內(nèi)垂直于直徑的弦,AB、CD相于點(diǎn)H,△AED與△AHD

關(guān)于直線AD成軸對(duì)稱.

(1)試說(shuō)明:AE為⊙O的切線;

(2)延長(zhǎng)AE與CD交于點(diǎn)P,已知PA=2,PD=1,求⊙O的半徑和DE的長(zhǎng).

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

.(9分)如圖,AB為⊙O內(nèi)垂直于直徑的弦,AB、CD相于點(diǎn)H,△AED與△AHD
關(guān)于直線AD成軸對(duì)稱.
(1)試說(shuō)明:AE為⊙O的切線;
(2)延長(zhǎng)AE與CD交于點(diǎn)P,已知PA=2,PD=1,求⊙O的半徑和DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011屆南京市高淳縣中考數(shù)學(xué)一模試卷 題型:解答題

.(9分)如圖,AB為⊙O內(nèi)垂直于直徑的弦,AB、CD相于點(diǎn)H,△AED與△AHD
關(guān)于直線AD成軸對(duì)稱.
(1)試說(shuō)明:AE為⊙O的切線;
(2)延長(zhǎng)AE與CD交于點(diǎn)P,已知PA=2,PD=1,求⊙O的半徑和DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年南京市考數(shù)學(xué)一模試卷 題型:解答題

.(9分)如圖,AB為⊙O內(nèi)垂直于直徑的弦,AB、CD相于點(diǎn)H,△AED與△AHD

關(guān)于直線AD成軸對(duì)稱.

(1)試說(shuō)明:AE為⊙O的切線;

(2)延長(zhǎng)AE與CD交于點(diǎn)P,已知PA=2,PD=1,求⊙O的半徑和DE的長(zhǎng).

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案