⊙O的半徑為4cm,點A在直線l上,若AO=4cm,則直線l與⊙O的位置關系是(  )
A.相交B.相切C.相離D.相切或相交
如圖:
∵⊙O的半徑為4cm,點A在直線l上,AO=4cm,
∴點A在⊙O上,
若直線l與⊙O只交于點A,則此時直線l與⊙O相切,
若直線l與⊙O過點A,且與⊙O還有另一個交點,則直線l與⊙O相交;
∴直線l與⊙O的位置關系是:相切或相交.
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,已知∠ACB=45°,∠ABC=120°,⊙O的半徑為1,
(1)求弦AC、AB的長;
(2)若P為CB的延長線上一點,試確定P點的位置,使PA與⊙O相切,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,以C為圓心的圓切AB于點D,交AC于點E,過點E作AB的垂線,垂足為H,HE交BC的延長線于點G,已知∠A=α,AE=m,則EG=______(用含α,m的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,C是⊙O的直徑AB延長線上一點,點D在⊙O上,且∠A=30°,∠BDC=
1
2
∠ABD.
(1)求證:CD是⊙O的切線;
(2)若OFAD分別交BD、CD于E、F,BD=2,求OE及CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在以O為圓心的兩個同心圓中,大圓的弦AB與小圓相切于點C,若大圓的半徑為5cm,小圓的半徑為3cm,則弦AB的長為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點B坐標為(7,9),⊙B的半徑為3,AB⊥y軸,垂足為A,點P從A點出發(fā)沿射線AB運動,速度為每秒一個單位,設運動的時間t(s):
(1)當點P運動到圓上時,求t值,并直接寫出此時P點坐標;
(2)若P運動12s時,判斷直線OP與⊙B的位置關系,并說明你的理由;
(3)點P從A點出發(fā)沿射線AB運動的過程中,請?zhí)骄恐本OP與⊙B有哪幾種位置關系,并直接寫出相應的運動時間t的取值范圍.(這一小題不要求寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,PB與⊙O相切于B點,C為⊙O上的點,OPAC.試判斷PC與⊙O的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,P為BC的中點.動點Q從點P出發(fā),沿射線PC方向以2cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設點Q運動的時間為ts.
(1)求AB的長;
(2)已知⊙O為△ABC的外接圓,若⊙P與⊙O相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,點P、Q同時從A點出發(fā),分別做勻速運動,其中點P沿AB、BC向終點C運動,速度為每秒2個單位,點Q沿AD向終點D運動,速度為每秒1個單位,當這兩點中有一個點到達自己的終點時,另一個點也停止運動,設這兩個點從出發(fā)運動了t秒.
(1)動點P與Q哪一點先到達自己的終點?此時t為何值;
(2)當O<t<2時,寫出△PQA的面積S與時間t的函數(shù)關系式;
(3)以PQ為直徑的圓能否與CD相切?若有可能,求出t的值或t的取值范圍;若不可能,請說明理由.

查看答案和解析>>

同步練習冊答案