【題目】在等腰三角形ABC中,∠ABC=90度,D是AC邊上的動點,連結(jié)BD,E、F分別是AB、BC上的點,且DE⊥DF.、(1)如圖1,若D為AC邊上的中點.
(1)填空:∠C= ,∠DBC= ;
(2)求證:△BDE≌△CDF.
(3)如圖2,D從點C出發(fā),點E在PD上,以每秒1個單位的速度向終點A運動,過點B作BP∥AC,且PB=AC=4,點E在PD上,設(shè)點D運動的時間為t秒(0≤1≤4)在點D運動的過程中,圖中能否出現(xiàn)全等三角形?若能,請直接寫出t的值以及所對應的全等三角形的對數(shù),若不能,請說明理由.
【答案】(1)45°,45°;(2)見解析;(3)當t=0時,△PBE≌△CAE一對,當t=2時,△AED≌△BFD,△ABD≌△CBD,△BED≌△CFD共三對,當t=4時,△PBA≌△CAB一對.
【解析】
(1)利用等腰直角三角形的性質(zhì)得出答案;
(2)利用等腰直角三角形的性質(zhì)結(jié)合ASA進而得出答案;
(3)當t=0時,t=2時,t=4時分別作出圖形,得出答案.
(1)解:∵在等腰三角形ABC中,∠ABC=90度,D為AC邊上的中點,
∴∠C=45°,BD⊥AC,
∴∠DBC=45°;
故答案為:45°;45°;
(2)證明:在等腰直角三角形ABC中,∠ABC=90°,D為AC邊上的中點,
∴BD⊥AC,
又∵ED⊥DF,
∴∠BDE+∠BDF=∠CDF+∠BDF=90°,
∴∠BDE=∠CDF,
∵∠C=∠DBC=45°,
∴BD=DC,∠EBD=90°-∠DBC=45°,
在△BDE和△CDF中,
,
∴△BDE≌△CDF(ASA);
(3)解:如圖①所示:當t=0時,△PBE≌△CAE一對;
理由:∵BP∥AC
∴∠P=∠ACE
在△PBE和△CAE中,
∴△PBE≌△CAE(AAS)
如圖②所示:當t=2時,△AED≌△BFD,△ABD≌△CBD,△BED≌△CFD共三對;
理由:在△ABD和△CBD中,
∴△ABD≌△CBD(SSS)
由(2)可知∠ADE+∠BDE=∠BDF+∠BDE,
∴∠ADE=∠BDF
在△AED和△BFD中,
∴△AED≌△BFD(ASA)
同理可證△BED≌△CFD.
如圖③所示:當t=4時,△PBA≌△CAB一對.
理由:∵PB∥AC,
∴∠PBA=∠CAB,
在△PBA和△CAB中,
∴△PBA≌△CAB(SAS)
綜上所述,答案為:
當t=0時,△PBE≌△CAE一對,當t=2時,△AED≌△BFD,△ABD≌△CBD,△BED≌△CFD共三對,當t=4時,△PBA≌△CAB一對.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一螞蟻從原點出發(fā),按向上、向右、向下的方向依次不斷移動,每次移動1個單位,其行走路線如下圖,則A2019的坐標是( )
A.(2019,0)B.(504,0)C.(1009,0)D.(1010,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們已經(jīng)學習過多項式除以單項式,多項式除以多項式一般可用豎式計算,步驟如下:
①把被除式、除式按某個字母作降冪排列,并把所缺的項用零補齊;
②用被除式的第一項除以除式第一項,得到商式的第一項;
③用商式的第一項去乘除式,把積寫在被除式下面(同類項對齊),消去相等項;
④把減得的差當作新的被除式,再按照上面的方法繼續(xù)演算,直到余式為零或余式的次數(shù)低于除式的次數(shù)時為止,被除式=除式×商式+余式.若余式為零,說明這個多項式能被另一個多項式整除.
例如:計算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用豎式除法如圖:
所以6x4﹣7x3﹣x2﹣1除以2x+1,商式為3x3﹣5x2+2x﹣1,余式為0.
根據(jù)閱讀材料,請回答下列問題(直接填空):
(1)(2x3+x﹣3)÷(x﹣1)= ;
(2)(4x2﹣4xy+y2+6x﹣3y﹣10)÷(2x﹣y+5)= ;
(3)[(x﹣2)(x﹣3)+1]÷(x﹣1)的余式為 ;
(4)x3+ax2+bx﹣15能被x2﹣2x+3整除,則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點.
(1)求該拋物線的解析式;
(2)拋物線的對稱軸上是否存在一點,使的周長最?若存在,請求出點的坐標,若不存在,請說明理由.
(3)設(shè)拋物線上有一個動點,當點在該拋物線上滑動到什么位置時,滿足,并求出此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,P、Q兩點分別是邊AB和AC的垂直平分線與BC的交點,連結(jié)AP和AQ,且BP=PQ=QC.求∠C的度數(shù).
證明:∵P、Q兩點分別是邊AB和AC的垂直平分線與BC的交點,
∴PA= ,QC=QA.
∵BP=PQ=QC,
∴在△APQ中,PQ= (等量代換)
∴△APQ是 三角形.
∴∠AQP=60°,
∵在△AQC中,QC=QA,
∴∠C=∠ .
又∵∠AQP是△AQC的外角,
∴∠AQP=∠ +∠ =60°.(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和)
∴∠C= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,將△ABC繞點B順時針旋轉(zhuǎn),使點A旋轉(zhuǎn)至y軸的正半軸上的A處,若AO=OB=2,則陰影部分面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EF∥BC交AB、AC于E、F.
(1)圖①中有幾個等腰三角形?猜想:EF與BE、CF之間有怎樣的關(guān)系.
(2)如圖②,若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.這時圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校260名學生參加植樹活動,要求每人植4-7棵,活動結(jié)束后隨機抽查了若干名學生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖甲)和條形圖(圖乙),回答下列問題:
(1)求這次抽查的學生數(shù);
(2)補全圖甲和圖乙;
(3)計算被抽查學生每人植樹量的平均數(shù),并估計這260名學生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象過點A(4,1)與正比例函數(shù)()的圖象相交于點B(,3),與軸相交于點C.
(1)求一次函數(shù)和正比例函數(shù)的表達式;
(2)若點D是點C關(guān)于軸的對稱點,且過點D的直線DE∥AC交BO于E,求點E的坐標;
(3)在坐標軸上是否存在一點,使.若存在請求出點的坐標,若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com