【題目】如圖,等邊△ABC中,點D在延長線上,CE平分∠ACD,且CE=BD.說明:△ADE是等邊三角形.
【答案】詳見解析.
【解析】試題分析:
要證△ADE為等邊三角形,可以先證它為等腰三角形,再證該等腰三角形的一個內(nèi)角為60°. 綜合分析已知條件可知,可以利用△ABD和△ACE全等證明AD=AE. 根據(jù)已知條件和等邊三角形的性質(zhì),不難證明∠B=∠ACE,進而利用SAS證明△ABD和△ACE全等. 利用全等三角形的性質(zhì)可以得到△ADE是等腰三角形. 利用全等三角形的性質(zhì),通過相關(guān)角之間的和差關(guān)系,不難證明∠DAE=∠BAC=60°,從而證明△ADE為等邊三角形.
試題解析:
證明:∵△ABC為等邊三角形,
∴∠B=∠ACB=∠BAC=60°,AB=AC.
∵∠ACB=60°,
∴∠ACD=180°-∠ACB=180°-60°=120°,
∵CE平分∠ACD,
∴.
∴∠B=∠ACE.
∵在△ABD和△ACE中,
,
∴△ABD≌△ACE (SAS),
∴AD=AE,∠BAD=∠CAE.
∵∠BAD=∠CAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAC=∠DAE=60°.
∵∠DAE=60°,AD=AE,
∴△ADE為等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標是(﹣3,2).
(1)將△ABC向右平移6個單位長度,再向下平移4個單位長度,得到△A'B′C′.請畫出平移后的△A′B′C′,并寫出點的坐標A′、B、C′;
(2)求出△A′B′C′的面積;
(3)若連接AA′、CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲間距離的最大值為( )
A.5 B.6 C.7 D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,E關(guān)于y軸對稱,且E在AC的垂直平分線上,已知點C(5,0).
(1)如果∠BAE=40°,那么∠C= °;
(2)如果△ABC的周長為13cm,AC=6cm,那么△ABE的周長= cm;
(3)AB+BO= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,截止5月1日浙江抗擊新冠肺炎部分城市治愈總?cè)藬?shù)統(tǒng)計表,下列說法錯誤的是( )
城市 | 杭州 | 寧波 | 金華 | 溫州 | 臺州 |
治愈總?cè)藬?shù) | 181 | 157 | 55 | 503 | 146 |
A.金華治愈總?cè)藬?shù)最少B.杭州治愈總?cè)藬?shù)最多
C.溫州治愈總?cè)藬?shù)503人D.寧波治愈總?cè)藬?shù)比臺州多
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y1=kx的圖象與反比例函數(shù)(k為常數(shù),k≠5且k≠0)的圖象有一個交點的橫坐標是2.
(1)求這兩個函數(shù)的解析式;
(2)求這兩個函數(shù)圖象的交點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com