已知a-b=4,ab+m2-6m+13=0,則(a+m)b的值為________.


分析:本題可將b=a-4代入關(guān)于a、b、m的等量關(guān)系式中,將13進(jìn)行拆分后,可使等號左邊構(gòu)成兩個完全平方式,根據(jù)非負(fù)數(shù)的性質(zhì)可求出a、b、m的值,再將它們代入(a+m)b中求解即可.
解答:ab+m2-6m+13=0可化為ab+m2-6m+9+4=0,
即ab+(m-3)2+4=0…①;
將a-b=4轉(zhuǎn)化為b=a-4…②,
②代入①得:a(a-4)+(m-3)2+4=0,
即(a-2)2+(m-3)2=0;
解得a=2;m=3.
∴b=a-4=2-4=-2;
因此(a+m)b=(2+3)-2=
故答案為
點(diǎn)評:本題主要考查負(fù)整數(shù)指數(shù)冪的運(yùn)算,該題首先通過配方法求出未知數(shù)a、b.m的值,然后計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB⊥BD,CD⊥BD,AD=BC.求證:
(1)AB=DC.
(2)AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AE=AC,AD=AB,∠EAD=∠CAB,求證:∠B=∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖1.若∠AOC=30°.求∠DOE的度數(shù);
(2)在圖1中,若∠AOC=a,直接寫出∠DOE的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的∠DOC繞頂點(diǎn)O順時針旋轉(zhuǎn)至圖2的位置,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2;         
(2)a2+b2;               
(3)a-b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)O是直線AB上的一點(diǎn),∠BOC=40°,OD、OE分別是∠BOC、∠AOC的角平分線.
(1)求∠AOE的度數(shù);
(2)寫出圖中與∠EOC互余的角;
(3)∠COE有補(bǔ)角嗎?若有,請把它找出來,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案