【題目】如圖,在邊長(zhǎng)為2的菱形ABCD中,∠B=45°,AE為BC邊上的高,將△ABE沿AE所在直線(xiàn)翻折得△AB1E,則△AB1E與四邊形AECD重疊部分的面積是 .
【答案】2 ﹣2
【解析】解:如圖,設(shè)CD與AB1交于點(diǎn)O,
∵在邊長(zhǎng)為2的菱形ABCD中,∠B=45°,AE為BC邊上的高,
∴AE= ,
由折疊易得△ABB1為等腰直角三角形,
∴S△ABB1= BAAB1=2,S△ABE=1,
∴CB1=2BE﹣BC=2 ﹣2,
∵AB∥CD,
∴∠OCB1=∠B=45°,
又由折疊的性質(zhì)知,∠B1=∠B=45°,
∴CO=OB1=2﹣ .
∴S△COB1= OCOB1=3﹣2 ,
∴重疊部分的面積為:2﹣1﹣(3﹣2 )=2 ﹣2.
首先設(shè)CD與AB1交于點(diǎn)O,由在邊長(zhǎng)為2的菱形ABCD中,∠B=45°,AE為BC邊上的高,可求得AE的長(zhǎng),繼而求得△ABB1、△AEB1、△COB1的面積.則可求得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)畫(huà)出與△ABC 關(guān)于 y 軸對(duì)稱(chēng)的圖形△A1B1C1;
(2)寫(xiě)出△A1B1C1 各頂點(diǎn)坐標(biāo);
(3)求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=(m+1)x2-|m|+n+4.
(1)當(dāng)m,n為何值時(shí),此函數(shù)是一次函數(shù)?
(2)當(dāng)m,n為何值時(shí),此函數(shù)是正比例函數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6cm,AD=4cm,點(diǎn)M是邊AB的中點(diǎn),點(diǎn)P是矩形邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)P從M出發(fā)在矩形的邊上沿著逆時(shí)針?lè)较蜻\(yùn)動(dòng),則當(dāng)點(diǎn)P沿著矩形的邊逆時(shí)針旋轉(zhuǎn)一周時(shí),△DMP面積剛好為5cm2的時(shí)刻有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù): 1.414, 1.732)
(1)求點(diǎn)B
距水平面AE的高度BH;
(2)求廣告牌CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(a2-4a+2)(a2-4a+6)+4進(jìn)行因式分解的過(guò)程:
解:設(shè)a2-4a=y(tǒng),則
原式=(y+2)(y+6)+4(第一步)
=y(tǒng)2+8y+16(第二步)
=(y+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)該同學(xué)因式分解的結(jié)果是否徹底:________(填“徹底”或“不徹底”);
(2)若不徹底,請(qǐng)你直接寫(xiě)出因式分解的最后結(jié)果:________;
(3)請(qǐng)你模仿以上方法對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=BC,△ABC≌△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn),觀察并猜想線(xiàn)段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)M、N在邊BC上.
(1)如圖1,如果AM=AN,求證:BM=CN;
(2)如圖2,如果M、N是邊BC上任意兩點(diǎn),并滿(mǎn)足∠MAN=45°,那么線(xiàn)段BM、MN、NC是否有可能使等式MN2=BM2+NC2成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com