(2007•黑龍江)在直徑為1000mm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,若油面寬AB=800mm,則油的最大深度為    mm.
【答案】分析:本題是已知圓的直徑,弦長求油的最大深度其實(shí)就是弧AB的中點(diǎn)到弦AB的距離,可以轉(zhuǎn)化為求弦心距的問題,利用垂徑定理來解決.
解答:解:過點(diǎn)O作OM⊥AB交AB于M,交弧AB于點(diǎn)E.連接OA.
在Rt△OAM中:OA=500mm,AM=AB=400mm.
根據(jù)勾股定理可得OM=300mm,則油的最大深度ME為200mm.
點(diǎn)評:圓中的有關(guān)半徑,弦長,弦心距之間的計(jì)算一般是通過垂徑定理轉(zhuǎn)化為解直角三角形的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2007•黑龍江)甲、乙二人騎自行車同時(shí)從張莊出發(fā),沿同一路線去李莊.甲行駛20分鐘因事耽誤一會(huì)兒,事后繼續(xù)按原速行駛.如圖表示甲、乙二人騎自行車行駛的路程y(千米)隨時(shí)間x(分)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)乙比甲晚多長時(shí)間到達(dá)李莊?
(2)甲因事耽誤了多長時(shí)間?
(3)x為何值時(shí),乙行駛的路程比甲行駛的路程多1千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省牡丹江市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•黑龍江)如圖,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),OA,OB(OA<OB)的長分別是關(guān)于x的一元二次方程x2-4mx+m2+2=0的兩根,C(0,3),且S△ABC=6
(1)求∠ABC的度數(shù);
(2)過點(diǎn)C作CD⊥AC交x軸于點(diǎn)D,求點(diǎn)D的坐標(biāo);
(3)在第(2)問的條件下,y軸上是否存在點(diǎn)P,使∠PBA=∠ACB?若存在,請直接寫出直線PD的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•黑龍江)如圖,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),OA,OB(OA<OB)的長分別是關(guān)于x的一元二次方程x2-4mx+m2+2=0的兩根,C(0,3),且S△ABC=6
(1)求∠ABC的度數(shù);
(2)過點(diǎn)C作CD⊥AC交x軸于點(diǎn)D,求點(diǎn)D的坐標(biāo);
(3)在第(2)問的條件下,y軸上是否存在點(diǎn)P,使∠PBA=∠ACB?若存在,請直接寫出直線PD的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•黑龍江)甲、乙二人騎自行車同時(shí)從張莊出發(fā),沿同一路線去李莊.甲行駛20分鐘因事耽誤一會(huì)兒,事后繼續(xù)按原速行駛.如圖表示甲、乙二人騎自行車行駛的路程y(千米)隨時(shí)間x(分)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)乙比甲晚多長時(shí)間到達(dá)李莊?
(2)甲因事耽誤了多長時(shí)間?
(3)x為何值時(shí),乙行駛的路程比甲行駛的路程多1千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•黑龍江)拋物線y=x2+bx+3經(jīng)過點(diǎn)(3,0),則b的值為   

查看答案和解析>>

同步練習(xí)冊答案