精英家教網已知:如圖,在△ABC中,AD為BC邊上的高,∠B=45°,∠C=30°,AD=2.求△ABC的面積.
分析:根據(jù)題中所給的條件,在直角三角形中解題,根據(jù)角的正弦值與三角形邊的關系,可求出△ABC的面積.
解答:解:在Rt△ADB中,
∵∠ADB=90°,∠B=45°,
∴BD=AD=2.(2分)
在Rt△ADC中,
∵∠ADC=90°,∠C=30°,AD=2,
∴DC=AD•cot30°=2
3
(5分)
∴S△ABC=
1
2
AD•BC=
1
2
×2×(2+2
3

=2+2
3
(7分)
點評:本題考查了解直角三角形中三角函數(shù)的應用,要熟練掌握好邊角之間的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結BD,CE,BD與CE交于O,連結AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案