(1998•寧波)如果兩圓的半徑分別為1和2,圓心距為3,那么這兩個圓的位置關系是( )
A.內(nèi)切
B.相交
C.外離
D.外切
【答案】分析:本題直接告訴了兩圓的半徑及圓心距,根據(jù)數(shù)量關系與兩圓位置關系的對應情況便可直接得出答案.
外離,則P>R+r;外切,則P=R+r;相交,則R-r<P<R+r;內(nèi)切,則P=R-r;內(nèi)含,則P<R-r.
(P表示圓心距,R,r分別表示兩圓的半徑).
解答:解:根據(jù)題意,得
R+r=2+1=3=圓心距,
∴兩圓外切.
故選D.
點評:本題考查了由數(shù)量關系來判斷兩圓位置關系的方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1998年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•寧波)如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數(shù)y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標分別為x1,x2,且x1>0,x2>0,正方形ABCD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設,求sin∠E和k.
((2),(3)的結(jié)果都用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源:1998年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1998•寧波)如圖,在直角坐標系中,OA=OC,AB=4,tan∠BCO=,二次函數(shù)y=ax2+bx+c圖象經(jīng)過A、B、C三點.
(1)求A,B,C三點的坐標;
(2)求二次函數(shù)的解析式;
(3)求過點A、B和拋物線頂點D的圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年浙江省寧波市中考數(shù)學試卷(解析版) 題型:解答題

(1998•寧波)如圖,在直角坐標系中,OA=OC,AB=4,tan∠BCO=,二次函數(shù)y=ax2+bx+c圖象經(jīng)過A、B、C三點.
(1)求A,B,C三點的坐標;
(2)求二次函數(shù)的解析式;
(3)求過點A、B和拋物線頂點D的圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:1998年浙江省寧波市中考數(shù)學試卷 題型:解答題

(1998•寧波)如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數(shù)y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標分別為x1,x2,且x1>0,x2>0,正方形ABCD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設,求sin∠E和k.
((2),(3)的結(jié)果都用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源:1998年全國中考數(shù)學試題匯編《一元二次方程》(02)(解析版) 題型:解答題

(1998•寧波)如圖,四邊形ABCD內(nèi)接于以AC為直徑的⊙O,AC,BD交于點E,DB平分∠ADC,AF∥BD交CD延長線于點F,且CD,DF的長是關于x的方程x2-3x+p=0的兩根.
(1)求證:DE=p;
(2)求DB的長.

查看答案和解析>>

同步練習冊答案