(2007•衡陽)如圖,點D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點,下列說法中,錯誤的是( )

A.AD平分∠BAC
B.EF=BC
C.EF與AD互相平分
D.△DFE是△ABC的位似圖形
【答案】分析:根據(jù)中位線定理和位似圖形的判定求解.
解答:解:A、因為AB>AC,所以中線AD不平分∠BAC,故錯誤;
B、根據(jù)中位線定理,EF=BC.故正確;
C、根據(jù)中位線定理,AF∥ED,AE∥FD,四邊形AEDF為平行四邊形,對角線EF與AD互相平分.故正確;
D、因為△DFE和△ABC的各邊對應成比例,為1:2,而且每組對應點所在的直線都經(jīng)過同一個點,對應邊互相平行,是位似圖形.
故選A.
點評:解答此題,要熟練掌握中位線定理,并靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2007•衡陽)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接AP并延長交⊙P于C點,過點C的直線y=-2x+b交x軸于點D,交y軸于點E,且⊙P的半徑為,AB=4.
(1)求點P,點C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+mx+n的圖象經(jīng)過A,C兩點,求這個二次函數(shù)的解析式,并寫出使函數(shù)值大于一次函數(shù)y=-2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•衡陽)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接AP并延長交⊙P于C點,過點C的直線y=-2x+b交x軸于點D,交y軸于點E,且⊙P的半徑為,AB=4.
(1)求點P,點C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+mx+n的圖象經(jīng)過A,C兩點,求這個二次函數(shù)的解析式,并寫出使函數(shù)值大于一次函數(shù)y=-2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2007•衡陽)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接AP并延長交⊙P于C點,過點C的直線y=-2x+b交x軸于點D,交y軸于點E,且⊙P的半徑為,AB=4.
(1)求點P,點C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+mx+n的圖象經(jīng)過A,C兩點,求這個二次函數(shù)的解析式,并寫出使函數(shù)值大于一次函數(shù)y=-2x+b值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年湖南省衡陽市中考數(shù)學試卷(解析版) 題型:解答題

(2007•衡陽)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接AP并延長交⊙P于C點,過點C的直線y=-2x+b交x軸于點D,交y軸于點E,且⊙P的半徑為,AB=4.
(1)求點P,點C的坐標;
(2)求證:CD是⊙P的切線;
(3)若二次函數(shù)y=-x2+mx+n的圖象經(jīng)過A,C兩點,求這個二次函數(shù)的解析式,并寫出使函數(shù)值大于一次函數(shù)y=-2x+b值的x的取值范圍.

查看答案和解析>>

同步練習冊答案