如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有兩個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為( )

A.1
B.2
C.3
D.4
【答案】分析:將該三角形剪成兩部分,拼圖使得△ADE和直角梯形BCDE不同的邊重合,即可解題.
解答:解:①使得BE與AE重合,即可構成鄰邊不等的矩形,如圖:

∵∠B=60°,
∴AC=BC,
∴CD≠BC.
②使得CD與AD重合,即可構成等腰梯形,如圖:

③使得AD與DC重合,能構成有兩個角為銳角的是菱形,如圖:

故計劃可拼出①②③.
故選C
點評:本題考查了三角形中位線定理的運用,考查了三角形中位線定理的性質(zhì),本題①中求證BD≠BC是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有兩個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為

                                                        (  )

                

A.1                 B.2            C.3                D.4

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(浙江杭州卷)數(shù)學 題型:選擇題

(2011•濱州)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為(  )

       A、1             B、2

       C、3              D、4

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(山東濱州卷)數(shù)學 題型:選擇題

(2011•濱州)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為( 。

       A、1             B、2

       C、3              D、4

 

查看答案和解析>>

同步練習冊答案