觀察下列各式:
2+
2
3
=22×
2
3

3+
3
8
=32×
3
8
,
4+
4
15
=42×
4
15
,

10+
a
b
=102×
a
b
(a,b為正整數(shù)),求分式
a2+2ab+b2
a-b
÷
a+b
a-b
的值.
分析:觀察一系列等式發(fā)現(xiàn)規(guī)律,求出a與b的值,原式利用除法法則變形,約分得到最簡(jiǎn)結(jié)果,將a與b的值代入計(jì)算即可求出值.
解答:解:觀察一系列等式得:10+
10
102-1
=102×
10
102-1
,
∴a=10,b=99,
則原式=
(a+b)2
a-b
a-b
a+b
=a+b=10+99=109.
點(diǎn)評(píng):此題考查了分式的化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

探索規(guī)律
觀察下列各式及驗(yàn)證過程:n=2時(shí)有式①:
2
3
=
2+
2
3
n=3時(shí)有式②:
3
8
=
3+
3
8

式①驗(yàn)證:
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3

式②驗(yàn)證:
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

(1)針對(duì)上述式①、式②的規(guī)律,請(qǐng)寫出n=4時(shí)的式子;
(2)請(qǐng)寫出滿足上述規(guī)律的用n(n為任意自然數(shù),且n≥2)表示的等式,并加以驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

猜想、探索規(guī)律
(1)某校生物教師李老師在生物實(shí)驗(yàn)室做試驗(yàn)時(shí),將水稻種子分組進(jìn)行發(fā)芽試驗(yàn);第1組取3粒,第2組取5粒,第3組取7!疵拷M所取種子數(shù)目比該組前一組增加2粒,按此規(guī)律,那么請(qǐng)你推測(cè)第100組應(yīng)該有種子數(shù).
 
粒;
(2)已知a1=
1
1×2×3
+
1
2
=
2
3
,a2=
1
2×3×4
+
1
3
=
3
8
,a3=
1
3×4×5
+
1
4
=
4
15
,…
,依據(jù)上述規(guī)律,則a99=
 
;
(3)下圖是一組有規(guī)律的圖案,第1個(gè)圖案由4個(gè)基礎(chǔ)圖形組成,第2個(gè)圖案由7個(gè)基礎(chǔ)圖形組成,…,那么第101個(gè)圖案中由
 
個(gè)基礎(chǔ)圖形組成;
精英家教網(wǎng)
(4)觀察下列各式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,…,根據(jù)觀察計(jì)算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、觀察下列各式,1×3=22-1;3×5=42-1;5×7=62-1;7×9=82-1;…由此,想到此例包含的規(guī)律可以用下式(  )表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、觀察下列各式:2×4=32-1,3×5=42-1,4×6=52-1,…,10×12=112-1,…,將你猜想到的規(guī)律用只含一個(gè)字母的式子表示出來:
n(n+2)=(n+1)2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、觀察下列各式:
(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72; …
請(qǐng)你根據(jù)觀察得到的規(guī)律判斷下列各式正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案