(2010•東陽市)如圖,BD為⊙O的直徑,點A是弧BC的中點,AD交BC于E點,AE=2,ED=4.
(1)求證:△ABE∽△ABD;
(2)求tan∠ADB的值;
(3)延長BC至F,連接FD,使△BDF的面積等于,求∠EDF的度數(shù).

【答案】分析:(1)由于A是弧BC的中點,故∠ADB=∠ABC,再加上公共角∠A,即可證得所求的三角形相似.
(2)由(1)的相似三角形所得比例線段,可求得AB的長,進而可在Rt△ABD中,求得∠ABD的正切值.
(3)連接CD,由(2)知∠ADB=30°,那么∠CDE=30°,∠CED=60°,由DE的長即可得到CD的值,進而可由△BDF的面積求得BF的長,進而可求得EF=ED=4,由此可證得△EDF是正三角形,即可得∠EDF的度數(shù).
解答:(1)證明:∵點A是弧BC的中點,
∴∠ABC=∠ADB,
又∵∠BAE=∠BAE,
∴△ABE∽△ABD.(3分)

(2)解:∵△ABE∽△ADB,
∴AB2=2×6=12,
∴AB=2
在Rt△ADB中,tan∠ADB=.(3分)

(3)解:連接CD,則∠BCD=90°;
由(2)得:∠ADB=∠EDC=30°,∠CED=60°;
已知DE=4,則CD=2;
∵S△BDF=×BF×2=8,即BF=8;
易得∠EBD=∠EDB=30°,即BE=DE=4,
∴EF=DE=4,又∠CED=60°,
∴△DEF是正三角形,
故∠EDF=60°.(2分)
點評:此題主要考查了相似三角形的判定和性質(zhì)、圓周角定理、圓心角、弧的關(guān)系、等邊三角形的判定和性質(zhì)等知識,難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年北京市解密預(yù)測中考模擬試卷02(解析版) 題型:解答題

(2010•東陽市模擬)已知拋物線y=-x2+bx+c經(jīng)過點A(0,4),且拋物線的對稱軸為直線x=2.
(1)求該拋物線的解析式;
(2)若該拋物線的頂點為B,在拋物線上是否存在點C,使得A、B、O、C四點構(gòu)成的四邊形為梯形?若存在,請求出點C的坐標;若不存在,請說明理由;
(3)試問在拋物線上是否存在著點P,使得以3為半徑的⊙P既與x軸相切,又與對稱軸相交?若存在,請求出點P的坐標,并求出對稱軸被⊙P所截得的弦EF的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《反比例函數(shù)》(02)(解析版) 題型:選擇題

(2010•東陽市)某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過點( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省金華市東陽市中考數(shù)學調(diào)研試卷(解析版) 題型:解答題

(2010•東陽市模擬)已知拋物線y=-x2+bx+c經(jīng)過點A(0,4),且拋物線的對稱軸為直線x=2.
(1)求該拋物線的解析式;
(2)若該拋物線的頂點為B,在拋物線上是否存在點C,使得A、B、O、C四點構(gòu)成的四邊形為梯形?若存在,請求出點C的坐標;若不存在,請說明理由;
(3)試問在拋物線上是否存在著點P,使得以3為半徑的⊙P既與x軸相切,又與對稱軸相交?若存在,請求出點P的坐標,并求出對稱軸被⊙P所截得的弦EF的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省蘇州市吳中區(qū)臨湖一中中考數(shù)學模擬試卷(一)(解析版) 題型:選擇題

(2010•東陽市)某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過點( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年浙江省嘉興市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•東陽市)某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過點( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)

查看答案和解析>>

同步練習冊答案