請閱讀以下說明過程,并補全所空內容:
(1)∵∠1=∠4(已知)
∴____________(內錯角相等,兩直線平行);
(2)∵∠2=∠3(已知)
∴____________(同位角相等,兩直線平行);
(3)∵∠B=∠5(已知)
∴____________(內錯角相等,兩直線平行);
(4)∵∠______=∠______(已知)
∴ADBE(內錯角相等,兩直線平行);
(5)∵∠______+∠______=180°(已知),
∴ADBE(同旁內角互補,兩直線平行).
精英家教網
(1)∵∠1=∠4(已知),
∴ABCD(內錯角相等,兩直線平行);
(2)∵∠2=∠3(已知),
∴ADBC(同位角相等,兩直線平行);
(3)∵∠B=∠5(已知),
∴ABCD(內錯角相等,兩直線平行);
(4)∵∠D=∠5(已知),
∴ADBE(內錯角相等,兩直線平行);
(5)∵∠B+∠BAD=180°(已知),
∴ADBE(同旁內角互補,兩直線平行).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

4、請閱讀以下說明過程,并補全所空內容:
(1)∵∠1=∠4(已知)
AB
CD
(內錯角相等,兩直線平行);
(2)∵∠2=∠3(已知)
AB
CD
(同位角相等,兩直線平行);
(3)∵∠B=∠5(已知)
AD
BC
(內錯角相等,兩直線平行);
(4)∵∠
D
=∠
5
(已知)
∴AD∥BE(內錯角相等,兩直線平行);
(5)∵∠
B(D)
+∠
BAD(BCD)
=180°(已知),
∴AD∥BE(同旁內角互補,兩直線平行).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,按要求解答問題:
如圖1,在△ABC中,∠A=2∠B,且∠A=60度.小明通過以下計算:由題意,∠B=30°,∠C=90°,c=2b,a=
3
b,得a2-b2=(
3
b)2-b2=2b2=b•c.即a2-b2=bc.于是,小明猜測:對于任意的△ABC,當∠A=2∠B時,關系式a2-b2=bc都成立.
(1)如圖2,請你用以上小明的方法,對等腰直角三角形進行驗證,判斷小明的猜測是否正確,并寫出驗證過程;
(2)如圖3,你認為小明的猜想是否正確?若認為正確,請你證明;否則,請說明理由;
(3)若一個三角形的三邊長恰為三個連續(xù)偶數(shù),且∠A=2∠B,請直接寫出這個三角形三邊的精英家教網長,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:問題:現(xiàn)有5分邊長為1的正方形,排列形式如圖1,請把它們分割后拼接成一個新的正方形.要求:畫出分割線并在正方形網格圖(圖中每個小正方形的邊長均為1)中畫出拼接成的新正方形.
小東同學的做法是:設新正方形的邊長為x(x>0),依題意,割補前后圖形的面積相等,有x2=5,解得x=
5
,由此可知新正方形的邊長等于兩個小正方形組成的矩形對角線長,于是,畫出如圖2所示的分割線,拼出如圖3所示的新正方形.
請你參考小東的做法,解決以下問題.要求:在圖4中畫出分割線,并在圖5的正方形網格圖(圖中每個小正方形的邊長均為1)中畫出拼接的新正方形.(說明:直接畫出圖形,不要求寫分析過程)

查看答案和解析>>

科目:初中數(shù)學 來源:期中題 題型:解答題

閱讀與理解:如圖,CDE是直線,∠1=120°,∠A=60°,直線AB與CD平行嗎?請閱讀以下說明過程,并補全所空內容。
解:AB∥CD
∵CDE是一條直線,
∴∠1+∠2=_____°,
又∵∠1=120°,
∴∠______=______°,
又∵∠A=60°,
∴∠2=∠A,
∴AB∥CD,理由是________。

查看答案和解析>>

同步練習冊答案