如圖,把邊長是3的正方形等分成9個小正方形,在有陰影的兩個小正方形內(nèi)(包括邊界)分別取點P、R,與已有格點Q(每個小正方形的頂點叫格點)構(gòu)成三角形,則△PQR的最大面積是   
【答案】分析:本題需先根據(jù)題意找出點p、Q、R的位置,然后再根據(jù)三角形面積公式即可求出結(jié)果.
解答:解:當點P、Q、R構(gòu)成如圖所示的三角形時,所圍成的三角形的面積最大
S△PQR=
=
=2
∴△PQR的最大面積是2
故答案為2.
點評:本題主要考查了正方形的性質(zhì),解題時要確定出P、R的位置是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解與應(yīng)用:
如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結(jié)論求出FM+FN的長.
(2)類比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:
已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內(nèi)部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:022

如圖,把邊長為6的正三角形紙板剪去三個三角形,得到的正六邊形的邊長是________

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年江蘇省無錫市惠山北片九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

翻轉(zhuǎn)類的計算問題在全國各地的中考試卷中出現(xiàn)的頻率很大,因此初三(5)班聰慧的小菲同學結(jié)合2011年蘇州市數(shù)學中考卷的倒數(shù)第二題對這類問題進行了專門的研究。你能和小菲一起解決下列各問題嗎?(以下各問只要求寫出必要的計算過程和簡潔的文字說明即可。)

1)如圖,小菲同學把一個邊長為1的正三角形紙片(即OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片向右翻轉(zhuǎn)一周回到初始位置,求頂點O所經(jīng)過的路程;并求頂點O所經(jīng)過的路線;

2)小菲進行類比研究:如圖,她把邊長為1的正方形紙片OABC放在直線l2上,OA邊與直線l2重合,然后將正方形紙片向右翻轉(zhuǎn)若干次.她提出了如下問題:

問題:若正方形紙片OABC接上述方法翻轉(zhuǎn)一周回到初始位置,求頂點O經(jīng)過的路程;

問題:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點O經(jīng)過的路程是。

3小菲又進行了進一步的拓展研究,若把這個正三角形的一邊OA與這個正方形的一邊OA重合(如圖3),然后讓這個正三角形在正方形上翻轉(zhuǎn),直到正三角形第一次回到初始位置(即OAB的相對位置和初始時一樣),求頂點O所經(jīng)過的總路程。

若把邊長為1的正方形OABC放在邊長為1的正五邊形OABCD上翻轉(zhuǎn)(如圖),直到正方形第一次回到初始位置,求頂點O所經(jīng)過的總路程。

4)規(guī)律總結(jié),邊長相等的兩個正多邊形,其中一個在另一個上翻轉(zhuǎn),當翻轉(zhuǎn)后第一次回到初始位置時,該正多邊形翻轉(zhuǎn)的次數(shù)一定是兩正多邊形邊數(shù)的___________。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:數(shù)學公式AB•r1+數(shù)學公式AC•r2=數(shù)學公式AC•h,∴r1+r2=h(定值).
(1)理解與應(yīng)用:
如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結(jié)論求出FM+FN的長.
(2)類比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:
已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內(nèi)部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年河北省唐山市灤南縣青坨營中學中考數(shù)學模擬試卷(解析版) 題型:解答題

閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
(1)理解與應(yīng)用:
如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結(jié)論求出FM+FN的長.
(2)類比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:
已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內(nèi)部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.

查看答案和解析>>

同步練習冊答案