【題目】如圖,平面直角坐標(biāo)系中有點(diǎn)A(0,1)B(0)

連接AB,以A為圓心,以AB為半徑畫弧,交y軸于點(diǎn)P1;

連接BP1,以B為圓心,以BP1為半徑畫弧,交x軸于點(diǎn)P2;

連接P1P2,以P1為圓心,以P1P2為半徑畫弧,交y軸于點(diǎn)P3;

按照這樣的方式不斷在坐標(biāo)軸上確定點(diǎn)Pn的位置,那么點(diǎn)P6的坐標(biāo)是_____

【答案】(27,0)

【解析】

利用勾股定理和坐標(biāo)軸上點(diǎn)的坐標(biāo)特征分別求出P1、P2、P3的坐標(biāo),然后利用坐標(biāo)變換規(guī)律寫出P4,P5,P6的坐標(biāo).

解:由題意知OA1,OB,

ABAP12

點(diǎn)P10,3),

∵BP1BP22

點(diǎn)P23,0),

∵P1P3P1P26,

點(diǎn)P30,9),

同理可得P49,0),P50,27),

點(diǎn)P6的坐標(biāo)是(27,0).

故答案為(27,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成20176月份的快遞投遞任務(wù)?如果不能,請問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,軸上一點(diǎn),的中點(diǎn),,為反比例函數(shù)的圖象上兩點(diǎn),且,,若,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如圖1,在ABC中,把AB繞點(diǎn)A按順時針方向旋轉(zhuǎn)αα180°)得到AB′,把AC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)β得到AC′,連接B′C′,當(dāng)α+β=180°時,我們稱AB′C′ABC旋補(bǔ)三角形,AB′C′B′C′上的中線AD叫做ABC旋補(bǔ)中線,點(diǎn)A叫做旋補(bǔ)中心

1)特例感知:在圖2、圖3中,AB′C′ABC旋補(bǔ)三角形ADABC旋補(bǔ)中線

①如圖2,當(dāng)ABC為等邊三角形時,ADBC的數(shù)量關(guān)系為AD=______BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為______

2)精確作圖:如圖4,已知在四邊形ABCD內(nèi)部存在點(diǎn)P,使得PDCPAB旋補(bǔ)三角形(點(diǎn)D的對應(yīng)點(diǎn)為點(diǎn)A,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)B),請用直尺和圓規(guī)作出點(diǎn)P(要求:保留作圖痕跡,不寫作法和證明)

3)猜想論證:在圖1中,當(dāng)ABC為任意三角形時,猜想ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為長方形,點(diǎn)軸上,點(diǎn)軸上,點(diǎn)坐標(biāo)為,將沿翻折,的對應(yīng)點(diǎn)為于點(diǎn),則點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AP,CP分別平分∠BAC,∠ACD,∠P=90°,設(shè)∠BAP=α.

(1)用α表示∠ACP;

(2)求證:ABCD;

(3)若APCF,求證:FC平分∠DCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017甘肅省天水市)△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;

2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當(dāng)BP=2,CQ=9BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年中國北京世界園藝博覽會于428日晚在北京·延慶隆重開幕,本屆世園會主題為綠色生活、美麗家園.自開園以來,世園會迎來了世界各國游客進(jìn)園參觀.據(jù)統(tǒng)計(jì),僅五一小長假前來世園會打卡的游客就總計(jì)約32.7萬人次.其中中國館也是非常受歡迎的場館.據(jù)調(diào)查,中國館51日游覽人數(shù)約為4萬人,53日游覽人數(shù)約為9萬人,若51日到53日游客人數(shù)的日增長率相同,求中國館這兩天游客人數(shù)的日平均增長率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)把方程(3x+2)(x-3)=2x-6,化為一般形式,并寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).

2)在寬為20m、長為30m的矩形地面上修建兩條同樣寬的道路,余下部分作為耕地.若耕地面積需要551m2,則修建的路寬應(yīng)為多少?(只列方程)

查看答案和解析>>

同步練習(xí)冊答案