如圖,拋物線y=-
1
2
x2+
1
2
x+6與x軸交于A、B兩點,與y軸相交于C點.
(1)求△ABC的面積;
(2)已知E點(0,-3),在第一象限的拋物線上取點D,連接DE,使DE被x軸平分,試判定四邊形ACDE的形狀,并證明你的結論.
(1)根據(jù)拋物線的解析式可求得:A(-3,0),B(4,0),C(0,6)
S△ABC=
1
2
AB•OC=
1
2
×7×6=21.

(2)四邊形ACDE是平行四邊形,
理由:設DE交x軸于點P.
作DM⊥x軸,DN⊥y軸,M、N是垂足.
在△EPO和△DPM中,
∠POE=∠PMD
∠OPE=∠MPD
EP=DP

∴△EPO≌△DPM(AAS).
則DM=EO=3.點D的縱坐標為3.
由于D在拋物線上,則有3=-
1
2
x2+
1
2
x+6,
x=-2(舍去)或x=3.
因此:D(3,3),
AC=
OA2+OC2
=3
5
,ED=
ND2+NE2
=3
5

AE=
AO2+OE2
=3
2
,CD=
ND2+NC2
=3
2
,
AC=DE,AE=DC,
∴四邊形ACDE是平行四邊形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知平面直角坐標系xOy中,點A在拋物線y=
2
3
3
x2+
3
3
上,過A作AB⊥x軸于點B,AD⊥y軸于點D,將矩形ABOD沿對角線BD折疊后得A的對應點為A′,重疊部分(陰影)為△BDC.
(1)求證:△BDC是等腰三角形;
(2)如果A點的坐標是(1,m),求△BDC的面積;
(3)在(2)的條件下,求直線BC的解析式,并判斷點A′是否落在已知的拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC內接于半徑為4的☉0,過0作BC的垂線,垂足為F,且交☉0于P、Q兩點.OD、OE的長分別是拋物線y=x2+2mx+m2-9與x軸的兩個交點的橫坐標.
(1)求拋物線的解析式;
(2)是否存在直線l,使它經過拋物線與x軸的交點,并且原點到直線l的距離是2?如果存在,請求出直線l的解析式;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=-x2+kx+3的圖象與x軸交于點(3,0)
(1)求函數(shù)的解析式;
(2)畫出這個函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有一個拋物線形拱橋,其最大高度為16米,跨度為40米,現(xiàn)把它的示意圖放在如圖所示的平面直角坐標系中,則此拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,點A在y軸上,⊙A與x軸交于B、C兩點,與y軸交于點D(0,3)和點E(0,-1)
(1)求經過B、E、C三點的二次函數(shù)的解析式;
(2)若經過第一、二、三象限的一動直線切⊙A于點P(s,t),與x軸交于點M,連接PA并延長與⊙A交于點Q,設Q點的縱坐標為y,求y關于t的函數(shù)關系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當y=0時,求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點的橫坐標x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:a、b、c分別是△ABC的∠A、∠B、∠C的對邊(a>b).二次函數(shù)y=(x-2a)x-2b(x-a)+c2的圖象的頂點在x軸上,且sinA、sinB是關于x的方程(m+5)x2-(2m-5)x+m-8=0的兩個根.
(1)判斷△ABC的形狀,關說明理由;
(2)求m的值;
(3)若這個三角形的外接圓面積為25π,求△ABC的內接正方形(四個頂點都在三角形三邊上)的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,鉛球運動員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關系式是y=-
1
12
x2+
2
3
x+
5
3
,則該運動員此次擲鉛球的成績是______m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-x-
3
2
與x軸正半軸交于點A(3,0),以OA為邊在x軸上方作正方形OABC,延長CB交拋物線于點D,再以BD為邊向上作正方形BDEF.
(1)求a的值;
(2)求點F的坐標.

查看答案和解析>>

同步練習冊答案