【題目】在下列四個(gè)圖案中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形是(
A.
B.
C.
D.

【答案】A
【解析】解:A、此圖形沿一條直線對(duì)折后能夠完全重合,∴此圖形是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)正確;
B、此圖形沿一條直線對(duì)折后不能夠完全重合,∴此圖形不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.
C、此圖形沿一條直線對(duì)折后能夠完全重合,∴此圖形是軸對(duì)稱圖形,旋轉(zhuǎn)180°不能與原圖形重合,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
D、此圖形沿一條直線對(duì)折后不能夠完全重合,∴此圖形不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.
故選:A.
根據(jù)軸對(duì)稱圖形的定義沿一條直線對(duì)折后,直線兩旁部分完全重合的圖形是軸對(duì)稱圖形,以及中心對(duì)稱圖形的定義分別判斷即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MB=ND,MBA=NDC,下列條件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到位置①可得到點(diǎn)P1 , 此時(shí)AP1= ;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②可得到點(diǎn)P2 , 此時(shí)AP2= +1;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③可得到點(diǎn)P3時(shí),AP3= +2…按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點(diǎn)P2026為止,則AP2016=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小正方形邊長都是1個(gè)長度單位,Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(1,1),點(diǎn)B的坐標(biāo)為(4,1).

①先將Rt△ABC向左平移5個(gè)單位長度,再向下平移1個(gè)單位長度得到Rt△A1B1C1 , 試在圖中畫出Rt△A1B1C1 , 并寫出點(diǎn)B1的坐標(biāo);
②再將Rt△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到Rt△A2B2C2 , 試在圖中畫出Rt△A2B2C2 . 并寫出點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長ME交CD的延長線于點(diǎn)N,連接MD,AN.

(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,△ABC是銳角三角形,高BDCE相交于點(diǎn)H.找出∠BHC和∠A之間存在何種等量關(guān)系;

(2)如圖②,若△ABC是鈍角三角形,∠A>90°,高BD,CE所在的直線相交于點(diǎn)H,把圖②補(bǔ)充完整,并指出此時(shí)(1)中的等量關(guān)系是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)半圓形橋洞截面示意圖,圓心為O,直徑AB是河底線,弦CD是水位線,CD∥AB,且AB=26m,OE⊥CD于點(diǎn)E.水位正常時(shí)測得OE:CD=5:24

(1)求CD的長;
(2)現(xiàn)汛期來臨,水面要以每小時(shí)4m的速度上升,則經(jīng)過多長時(shí)間橋洞會(huì)剛剛被灌滿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BC相交于點(diǎn)N,連接BM,DN.

(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案