【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,點A、B的坐標(biāo)分別是A(3,2),B(1,3),△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1

(1)點A關(guān)于點O中心對稱的點P的坐標(biāo)為
(2)在網(wǎng)格內(nèi)畫出△A1OB1;
(3)點A1、B1的坐標(biāo)分別為

【答案】
(1)(﹣3,﹣2)
(2)

解:如圖,△A1OB1即為所求


(3)(﹣2,3),(﹣3,1)
【解析】解:(1)∵A(3,2),
∴P(﹣3,﹣2).
所以答案是:(﹣3,﹣2);
(3)由圖可知,A1(﹣2,3),B1(﹣3,1).
所以答案是:(﹣2,3),(﹣3,1).
【考點精析】掌握圖形的旋轉(zhuǎn)和旋轉(zhuǎn)的性質(zhì)是解答本題的根本,需要知道每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度,任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達(dá)終點

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2012義烏市)在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1
(1)如圖1,當(dāng)點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);
(2)如圖2,連接AA1 , CC1 . 若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1 , 求線段EP1長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點G,交BE于點H,下面說法中正確的序號是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一個軸對稱圖形,A(3,-2),B(3,﹣6)兩點在此圖形上且互為對稱點,若此圖形上有一個點C(﹣2,+1).

(1)求點C的對稱點的坐標(biāo).

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,AB是半圓O的直徑,弦AD、BC相交于點P,那么 等于∠BPD的(
A.正弦
B.余弦
C.正切
D.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E正方形ABCD外一點,點F是線段AE上一點,△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.

(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為(
A.40°
B.45°
C.50°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)計算: +|2﹣ |;
(2)當(dāng)關(guān)于x的方程x2﹣2x+c=0有實數(shù)根時,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案