如圖,在梯形ABCD中,AD//BC,E是BC的中點,AD=5,BC=12,CD=,∠C=45°,點P是BC邊上一動點,設(shè)PB的長為x.
【小題1】當x的值為____________時,以點P、A、D、E為頂點的四邊形為直角梯形
【小題2】當x的值為____________時,以點P、A、D、E為頂點的四邊形為平行四邊形;
【小題3】點P在BC邊上運動的過程中,以P、A、D、E為頂點的四邊形能否構(gòu)成菱形?試說明理由.

【小題1】3或8
【小題2】1或11
【小題3】由(2)知,當BP=11時,以P、A、D、E為頂點的四邊形為菱形解析:
解:(1)如圖,分別過A、D作AM⊥BC于M,DN⊥CB于N,
∴AM=DN,AD=MN=5,
而CD=4 ,∠C=45°,
∴DN=CN=4=AM,
∴BM=CB-CN-MN=3,
若點P、A、D、E為頂點的四邊形為直角梯形,
則∠APC=90°或∠DEB=90°,
當∠APC=90°時,
∴P與M重合,
∴BP=BM=3;
當∠DEB=90°時,
∴P與N重合,
∴BP=BN=8;
故當x的值為3或8時,以點P、A、D、E為頂點的四邊形為直角梯形;
(2)若以點P、A、D、E為頂點的四邊形為平行四邊形,那么AD=PE,有兩種情況:
①當P在E的左邊,
∵E是BC的中點,
∴BE=6,
∴BP=BE-PE=6-5=1;
②當P在E的右邊,
BP=BE+PE=6+5=11;
故當x的值為1或11時,以點P、A、D、E為頂點的四邊形為平行四邊形;
(3)由(2)知,當BP=11時,以點P、A、D、E為頂點的四邊形是平行四邊形
∴EP=AD=5,
過D作DN⊥BC于N,
∵CD=4 ,∠C=45°,
則DN=CN=4,
∴NP=3.
∴DP=
∴EP=DP,
故此時?PDAE是菱形.
即以點P、A、D、E為頂點的四邊形能構(gòu)成菱形
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案