已知,在平面直角坐標系中,反比例函數(shù)y=數(shù)學公式(k≠0)的圖象與一次函數(shù)y=x+b的圖象交于A(-1,b-1)、B(-5,b-5)兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)設拋物線y=-x2+b′x+c(c>0)的頂點P在直線AB上,且PA:PB=1:3,求拋物線的解析式;
(3)把以上函數(shù)圖象同步向右平移,使直線AB與兩坐標軸所圍成的三角形的面積等于2,求平移后的拋物線的解析式.

解:(1)把A(-1,b-1)、B(-5,b-5)兩點代入y=,得:
,
解得:,
∴正比例函數(shù)解析式為:y=x+6,
反比例函數(shù)反比例函數(shù)解析式為:y=-;

(2)∵直線AB為y=x+6,且A(-1,5),B(-5,1),
過點A,B分別作y軸、x軸的平行線,它們相交于點C(-1,1),
則AC=BC=4,
①P點在線段AB上時,作PE∥BC,交AC于E,作PD∥AC交BC于D,

==,
=,
=,=
∴PE=1,PD=3,
∴P(-2,4),
∴拋物線的解析式為:y=-(x-1) 2+4,
即y=-x 2-4x,
此時,c=0,不符合題意,舍去;
②當P點在線段BA的延長線上時,同理可得:P(1,7)
∴拋物線的解析式為:y=-(x-1) 2+7,
即y=-x 2+2x+6,
此時,c=6>0,符合題意,
∴由①、②可知,拋物線的解析式為:y=-x 2+2x+6;

(3)設平移后的直線解析式為:y=x+t,
它交x軸于點(-t,0),交y軸于點(0,t),
∴S=×|-t|×|t|=2,
∴t=±2,
∴平移后的直線解析式為:y=x+2或y=x-2,
即圖象向右平移了4個單位或8個單位,
此時的拋物線解析式為:y=-(x-1-4)2+7或y=-(x-1-8)2+7,
即y=-x 2+10x-18或y=-x 2+18x-74.
分析:(1)利用待定系數(shù)法求出一次函數(shù)解析式和反比例函數(shù)解析式即可;
(2)根據(jù)P點在線段AB上時,作PE∥BC,交AC于E,作PD∥AC交BC于D或當P點在線段BA的延長線上時,利用平行線的性質(zhì)分別求出即可;
(3)首先求出直線解析式,進而得出拋物線解析式即可.
點評:此題主要考查了反比例函數(shù)的綜合應用以及二次函數(shù)解析式的求法和平行線分線段成比例定理等知識,正確得出直線AB解析式是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在平面直角坐標xOy中,反比例函數(shù)y=
k
x
的圖象與y=
3
x
的圖象關(guān)于x軸對稱,又與直線y=ax+2交于點A(m,3).已知點M(-3,y1)、N(l,y2)和Q(3,y3)三點都在反比例函數(shù)y=
k
x
的圖象上. 
(l)比較y1、y2、y3的大。
(2)試確定a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系里,如圖,已知直線:y=-x+3
2
交y軸于點A,交x軸于點B,三角板OCD如圖1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD繞點.順時針旋轉(zhuǎn)15°,得到△OC1D1(如圖2),這時OC1交AB于點E,C1D1交AB于點F.
(1)求∠EFC1的度數(shù);
(2)求線段AD1的長;
(3)若把△OC1D1,繞點0順時針再旋轉(zhuǎn)30.得到△OC2D2,這時點B在△OC2D2的內(nèi)部、外部、還是邊上?證明你的判斷.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標中,已知點P(3-m,2m-4)在第一象限,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,已知直線y=kx+b與直線y=
1
2
x
平行,分別交x軸,y軸于A,B兩點,且A點的橫坐標是-4,以AB為邊在第二象限內(nèi)作矩形ABCD,使AD=
5

(1)求矩形ABCD的面積;
(2)過點D作DH⊥x軸,垂足為H,試求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為
y=-
6
x
y=-
6
x

查看答案和解析>>

同步練習冊答案