解:(1)OM=ON.
(2)OM=ON,
理由是:∵BM⊥AC,DN⊥AC,
∴BM∥DN,
∴∠DNO=∠BEO,∠NDB=∠MBD
∵平行四邊形ABCD,
∴OD=OB,
在△DNO和△BEO中
∠DNO=∠BEO,∠NDB=∠MBD,OD=OB,
∴△DNO≌△BEO,
∴ON=OE,
∵∠BMN=90°,
∴OM=ON(直角三角形斜邊上的中線等于斜邊的一半).
(3)規(guī)律:AC繞A旋轉(zhuǎn)到任意位置均有OM=ON,
如圖所示:AC旋轉(zhuǎn)到AC′,過O作OE⊥AC′,
∵平行四邊形ABCD,
∴OD=OB,
∵DN⊥AC′,OE⊥AC′,BM⊥AC′,
∴DN∥OE∥BM,
∵DO=OB,
∴根據(jù)一組平行線在一條直線上截得的線段相等,那么在其它直線上截得的相等也相等得出:NE=ME,
∴ON=OM.
分析:(1)根據(jù)平行四邊形性質(zhì)得出OD=OB,證△DON和△BOM全等即可推出答案;
(2)ON交BM于E,證△DNO和△BOE全等,推出OE=ON,根據(jù)直角三角形斜邊上的中線性質(zhì)求出集;
(3)根據(jù)平行四邊形性質(zhì)推出OD=OB,根據(jù)平行線分線段成比例定理求出NE=MN,根據(jù)線段垂直平分線定理求出集.
點評:本題考查了平行線分線段成比例定理,全等三角形的性質(zhì)和判定,平行四邊形性質(zhì),旋轉(zhuǎn)的性質(zhì),線段垂直平分線性質(zhì)等知識點的應(yīng)用,主要是通過作輔助線OE,證ON和OE的關(guān)系,進一步求出ON=OM.