如圖,拋物線F:的頂點為P,拋物線:與y軸交于點A,與直線OP交于點B.過點P作PD⊥x軸于點D,平移拋物線F使其經(jīng)過點A、D得到拋物線F′:,拋物線F′與x軸的另一個交點為C.

⑴當(dāng)a = 1,b=-2,c = 3時,求點C的坐標(biāo)(直接寫出答案);
⑵若a、b、c滿足了
①求b:b′的值;
②探究四邊形OABC的形狀,并說明理由.

解:(1) C(3,0);
(2)①拋物線,令=0,則=,
∴A點坐標(biāo)(0,c).
,∴
∴點P的坐標(biāo)為().
∵PD⊥軸于D,∴點D的坐標(biāo)為().
根據(jù)題意,得a=a′,c= c′,∴拋物線F′的解析式為
又∵拋物線F′經(jīng)過點D(),∴

又∵,∴
∴b:b′=
②由①得,拋物線F′為
令y=0,則

∵點D的橫坐標(biāo)為∴點C的坐標(biāo)為().
設(shè)直線OP的解析式為
∵點P的坐標(biāo)為(),
,∴,∴
∵點B是拋物線F與直線OP的交點,∴

∵點P的橫坐標(biāo)為,∴點B的橫坐標(biāo)為
代入,得
∴點B的坐標(biāo)為
∴BC∥OA,AB∥OC.(或BC∥OA,BC =OA),
∴四邊形OABC是平行四邊形.
又∵∠AOC=90°,∴四邊形OABC是矩形.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖是拋物線拱橋,已知水位在AB位置時,水面寬4
6
m
,水位上升3m,達(dá)到警戒線CD,這時水面寬4
3
m
.若洪水到來時,水位以每小時0.25m的速度上升,求水過警戒線后幾小時淹到拱橋頂?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點為C,已知A點與O點的距離為
5
2
米,旗桿AB高為3米,C點的垂精英家教網(wǎng)直高度為3.5米,C點與O點的水平距離為7米,以O(shè)為坐標(biāo)原點,水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達(dá)到的最高點,求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是拋物線拱橋,已知水位在AB位置時,水面寬4
6
米,水面距離橋頂12米,當(dāng)水位上升達(dá)到警戒線CD時水面寬4
3
米,若洪水到來時,水位以每小時0.25米速度上升.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求該拋物線的解析式.
(2)求水過警戒線后幾小時淹到拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《第27章 二次函數(shù)》2009年單元檢測試卷(1)(解析版) 題型:解答題

如圖是拋物線拱橋,已知水位在AB位置時,水面寬,水位上升3m,達(dá)到警戒線CD,這時水面寬.若洪水到來時,水位以每小時0.25m的速度上升,求水過警戒線后幾小時淹到拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年青海省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點拋出(如圖),小球擦旗桿頂B而過,落地時撞擊斜坡的落點為C,已知A點與O點的距離為米,旗桿AB高為3米,C點的垂直高度為3.5米,C點與O點的水平距離為7米,以O(shè)為坐標(biāo)原點,水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計);
(2)H為小球所能達(dá)到的最高點,求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

同步練習(xí)冊答案