已知,AB是⊙O的直徑,點(diǎn)P在弧AB上(不含點(diǎn)A、B),把△AOP沿OP對(duì)折,點(diǎn)A的對(duì)應(yīng)點(diǎn)C恰好落在⊙O上.
(1)當(dāng)P、C都在AB上方時(shí)(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);
(2)當(dāng)P在AB上方而C在AB下方時(shí)(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;(3)當(dāng)P、C都在AB上方時(shí)(如圖3),過C點(diǎn)作CD⊥直線AP于D,且CD是⊙O的切線,證明:AB=4PD.
解:(1)PO與BC的位置關(guān)系是PO∥BC;
(2)(1)中的結(jié)論P(yáng)O∥BC成立,理由為:
由折疊可知:△APO≌△CPO,
∴∠APO=∠CPO,
又∵OA=OP,
∴∠A=∠APO,
∴∠A=∠CPO,
又∵∠A與∠PCB都為所對(duì)的圓周角,
∴∠A=∠PCB,
∴∠CPO=∠PCB,
∴PO∥BC;
(3)∵CD為圓O的切線,
∴OC⊥CD,又AD⊥CD,
∴OC∥AD,
∴∠APO=∠COP,
由折疊可得:∠AOP=∠COP,
∴∠APO=∠AOP,
又OA=OP,∴∠A=∠APO,
∴∠A=∠APO=∠AOP,
∴△APO為等邊三角形,
∴∠AOP=60°,
又∵OP∥BC,
∴∠OBC=∠AOP=60°,又OC=OB,
∴△BCO為等邊三角形,
∴∠COB=60°,
∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,
∴△POC也為等邊三角形,
∴∠PCO=60°,PC=OP=OC,
又∵∠OCD=90°,
∴∠PCD=30°,
在Rt△PCD中,PD=PC,
又∵PC=OP=AB,
∴PD=AB,即AB=4PD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
2 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
2 |
16 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com