【題目】已知數(shù)軸上有A、B兩個點.

(1)如圖1,若AB=a,MAB的中點,C為線段AB上的一點,且,則AC=   ,CB=   ,MC=   (用含a的代數(shù)式表示);

(2)如圖2,若A、B、C三點對應(yīng)的數(shù)分別為﹣40,﹣10,20.

當(dāng)A、C兩點同時向左運動,同時B點向右運動,已知點A、B、C的速度分別為8個單位長度/秒、4個單位長度/秒、2個單位長度/秒,點M為線段AB的中點,點N為線段BC的中點,在B、C相遇前,在運動多少秒時恰好滿足:MB=3BN.

現(xiàn)有動點P、Q都從C點出發(fā),點P以每秒1個單位長度的速度向終點A移動;當(dāng)點P移動到B點時,點Q才從C點出發(fā),并以每秒3個單位長度的速度向左移動,且當(dāng)點P到達A點時,點Q也停止移動(若設(shè)點P的運動時間為t).當(dāng)PQ兩點間的距離恰為18個單位時,求滿足條件的時間t值.

【答案】(1)a,a,a;(2)2秒時恰好滿足MB=3BN;(3)當(dāng)t18秒、36秒和54秒時,P、Q兩點相距18個單位長度.

【解析】

(1)根據(jù)題意中的等量關(guān)系用a表示出AC,CB,MC即可;

(2)①假設(shè)xCB右邊時,恰好滿足MB=3BN,據(jù)此得出方程,求出x的值即可;

②點P表示的數(shù)為20t,點Q表示的數(shù)為203t30),再分情況推論①當(dāng)點P移動18秒時,②點Q在點P的右側(cè),③當(dāng)點Q在點P的左側(cè),即可得出結(jié)論.

解:(1)∵AB=a,C為線段AB上的一點,且=,

∴AC=AB=a,CB=AB=a,

∵MAB的中點,

∴MC=AB﹣AB=a,

故答案為: a, a, a;

(2)∵A、B、C三點對應(yīng)的數(shù)分別為﹣40,﹣10,20,

∴AB=BC=30,

設(shè)x秒時,CB右邊時,恰好滿足MB=3BN,

∵BM=(8x+4x+30),BN=(30﹣4x﹣2x),

當(dāng)MB=3BN時,(8x+4x+30)=3×(30﹣4x﹣2x),

解得:x=2,

∴2秒時恰好滿足MB=3BN;

(3)點P表示的數(shù)為20﹣t,點Q表示的數(shù)為20﹣3(t﹣30),

當(dāng)點P移動18秒時,點Q沒動,此時,PQ兩點間的距離恰為18個單位;

Q在點P的右側(cè),∴20﹣3(t﹣30)﹣(20﹣t)=18,

解答:t=36,

當(dāng)點Q在點P的左側(cè),∴20﹣t﹣[20﹣3(t﹣30)]=18,

解答:t=54;

綜上所述:當(dāng)t18秒、36秒和54秒時,P、Q兩點相距18個單位長度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的四個頂點在坐標軸上,點A的坐標為(﹣3,0),假設(shè)有甲,乙兩個物體分別由點A同時出發(fā),沿正方形ABCD的邊作環(huán)繞運動,物體甲按順時針方向勻速運動,物體乙按逆時針方向勻速運動,若物體甲12秒鐘可環(huán)繞一周回到點A,物體乙24秒鐘可環(huán)繞一周回到點A,則兩個物體運動后的第2017次相遇地點的坐標是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)學(xué)生會為了解該校學(xué)生喜歡球類活動的情況,采取抽樣調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖。(要求每位同學(xué)只能選擇一種自己喜歡的球類;扇形統(tǒng)計圖中用乒乓球、足球、排球、籃球代表喜歡這四種球類中的某一種球類的學(xué)生人數(shù)請你根據(jù)圖中提供的信息,解答下列問題:

(1)在這次研究中,一共調(diào)查了多少名學(xué)生?

(2)喜歡排球的人數(shù)在扇形統(tǒng)計圖中所對應(yīng)的扇形的圓心角是多少度?

(3)補全頻數(shù)分布折線統(tǒng)計圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一平行四邊形ABCD與一正方形CEFG,其中E點在AD上.若∠ECD=35°,∠AEF=15°,則∠B的度數(shù)為何?( 。
A.50
B.55
C.70
D.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 內(nèi)的射線,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,當(dāng)∠BOC 在∠AOD 內(nèi)繞著點 O以 3°/秒的速度逆時針旋轉(zhuǎn) t 秒時,當(dāng)∠AOM:∠DON=3:4 時,則 t=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體由幾個大小相同的小立方塊搭成,從正面和上面觀察這 個幾何體,看到的形狀都一樣(如圖所示).

(1)這個幾何體最少有多少個小立方塊,最多有多少個小立方塊;

(2)當(dāng)擺放的小立方塊最多時,請畫出從左面觀察到的視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(一), 為一條拉直的細線,A、B兩點在 上,且 =1:3, =3:5.若先固定B點,將 折向 ,使得 重迭在 上,如圖(二),再從圖(二) 的A點及與A點重迭處一起剪開,使得細線分成三段,則此三段細線由小到大的長度比為何?(。
A.1:1:1
B.1:1:2
C.1:2:2
D.1:2:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求若干個相同的不為零的有理數(shù)的除法運算叫做除方.

如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類比有理數(shù)的乘方,我們把 2÷2÷2 記作 2,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3),讀作“-3 的圈 4 次方”.

一般地,把(a≠0)記作,讀作“a的圈n次方”.

(1)直接寫出計算結(jié)果 _____ _________, ___________,

(2)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,

請嘗試將有理數(shù)的除方運算轉(zhuǎn)化為乘方運算,歸納如下一個非零有理數(shù)的圈 n 次方等于_____.

(3)計算 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點BF,C,E在直線lFC之間不能直接測量,點ADl異側(cè),測得AB=DE,AC=DFBF=EC.

1求證:ABC≌△DEF;

2指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案