【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(4,0),經(jīng)過點(diǎn)A點(diǎn)B拋物線y=x+bx+c與y軸交于點(diǎn)C.
(1)求拋物線的關(guān)系式.
(2)△ABC的外接圓與y軸交于點(diǎn)D,在拋物線上是否存在點(diǎn)M使S△MBC=S△DBC,若存在,請(qǐng)求出點(diǎn)M的坐標(biāo).
(3)點(diǎn)P是直線y=-x上一個(gè)動(dòng)點(diǎn),連接PB,PC,當(dāng)PB+PC+PO最小時(shí),求點(diǎn)P的坐標(biāo)及其最小值.
【答案】(1)拋物線關(guān)系式:y=x-3x-4;(2)點(diǎn)M(5,6)(3)P(2-, -2)
【解析】試題分析:(1)用代入法直接求函數(shù)解析式;(2)存在,連接AD,過點(diǎn)D做直線l∥BC,則求出直線l的關(guān)系式為:y=x+1,再求它與的交點(diǎn)坐標(biāo),即可;(3)把△BPO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△BFE,連接FP得等邊△BFP, 則PB+PC+PO=PC+PF+FE,所以連接EC與直線y=-x交于點(diǎn)P,則點(diǎn)P即為所求. 先求出直線EC關(guān)系式為:y=(+2)x-4,再聯(lián)立y=-x得出P的坐標(biāo)即可;
試題解析:
(1)把點(diǎn)A(-1,0),點(diǎn)B(4,0)代入y=x+bx+c得:
解得:
∴0拋物線關(guān)系式:y=x-3x-4
(2)連接AD,
把x=0代入y=x+bx+c得y=-4.
∴OC=OB=4.
∴∠ABC=45°.
∴∠ADC=45°
∵OA=1,
∴OD=1
過點(diǎn)D做直線l∥BC,則直線l的關(guān)系式為:y=x+1
聯(lián)立拋物線關(guān)系式得:
解得
∴點(diǎn)M(5,6)
(3)把△BPO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△BFE,
連接FP得等邊△BFP,
∴PB+PC+PO=PC+PF+FE
∴連接EC與直線y=-x交于點(diǎn)P,則點(diǎn)P即為所求.
在等邊△OBE中
∵OB=4
∴點(diǎn)E(2, )
又∵點(diǎn)C(0,-4)
∴直線EC關(guān)系式為:y=(+2)x-4
聯(lián)立y=-x得
點(diǎn)P(2-, -2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市教研室對(duì)2008年嘉興市中考數(shù)學(xué)試題的選擇題作了錯(cuò)題分析統(tǒng)計(jì),受污損的下表記錄了n位同學(xué)的錯(cuò)題分布情況:已知這n人中,平均每題有11人答錯(cuò),同時(shí)第6題答錯(cuò)的人數(shù)恰好是第5題答錯(cuò)人數(shù)的1.5倍,且第2題有80%的同學(xué)答對(duì).則第5題有 人答對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小紅將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測(cè)得AB=15,AD=12.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問題,請(qǐng)你幫助解決.
(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過點(diǎn)A(如圖2)求FB的長(zhǎng)度
(2)在(1)的條件下,小紅想用△EFG包裹矩形ABCD,她想了兩種包裹的方法如圖3、圖4,請(qǐng)問哪種包裹紙片的方法使得未包裹住的面積大?(紙片厚度忽略不計(jì))請(qǐng)你通過計(jì)算說服小紅。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD,AB的中點(diǎn).下列結(jié)論:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;④EA平分∠GEF;⑤四邊形BEFG是菱形.
其中正確的是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF= BC,連結(jié)CD和EF.
(Ⅰ)求證:四邊形CDEF是平行四邊形;
(Ⅱ)求四邊形BDEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)運(yùn)算程序的示意圖,若開始輸入的x值為81,我們看到第一次輸出的結(jié)果為27,第二次輸出的結(jié)果為9,…,第2017次輸出的結(jié)果為( )
A.1
B.3
C.9
D.27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC , 使∠BOC=135°,將一個(gè)含45°角的直角三角尺的一個(gè)頂點(diǎn)放在點(diǎn)O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.
(1)將圖1中的三角尺繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,如圖1所示,此時(shí)∠BOM=;在圖1中,OM是否平分∠CON?請(qǐng)說明理由;
(2)緊接著將圖2中的三角板繞點(diǎn)O逆時(shí)針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說明理由;
(3)將圖1中的三角板繞點(diǎn)O按每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【發(fā)現(xiàn)證明】
如圖1,點(diǎn)E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數(shù)量關(guān)系.
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
【類比引申】
(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長(zhǎng)線上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;
【聯(lián)想拓展】
(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com