如圖,在△ABC中,∠B=32°,∠C=48°,AD⊥BC于點(diǎn)D,AE平分∠BAC交BC于點(diǎn)E,DF⊥AE于點(diǎn)F,求∠ADF的度數(shù).
分析:由在△ABC中,∠B=32°,∠C=48°,根據(jù)三角形內(nèi)角和定理,可求得∠BAC的度數(shù),由AE平分∠BAC,根據(jù)角平分線的定義,可求得∠CAE的度數(shù),由AD⊥BC,根據(jù)直角三角形的性質(zhì),可求得∠CAD的度數(shù),繼而求得∠DAE的度數(shù),則可求得∠ADF的度數(shù).
解答:解:在△ABC中,∠B=32°,∠C=48°,
∴∠BAC=180°-∠B-∠C=100°,
∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC=50°,
∵AD⊥BC,
∴∠CAD=90°-∠C=42°,
∴∠DAE=∠CAE-∠CAD=8°,
∵DF⊥AE,
∴∠ADF=90°-∠DAE=82°.
點(diǎn)評(píng):此題考查了三角形內(nèi)角和定理與直角三角形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案