【題目】已知(m 3)x2 3x + 1 = 0是關(guān)于x的一元二次方程,則m的取值范圍是______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個面并分別標(biāo)有數(shù)字1,2,3,4.
圖1 圖2
第23題圖
如圖2,正方形ABCD頂點(diǎn)處各有一個圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時針方向連續(xù)跳幾個邊長.
如:若從圖A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈D;若第二次擲得2,就從D開始順時針連續(xù)跳2個邊長,落到圈B;……
設(shè)游戲者從圈A起跳.
(1)嘉嘉隨機(jī)擲一次骰子,求落回到圈A的概率P1;
(2)淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出她與嘉嘉落回到圈A的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點(diǎn)H與點(diǎn)A重合時,EF=2.
以上結(jié)論中,你認(rèn)為正確的有( )個.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖,把△EFP放置在菱形ABCD中,使得頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>.
⑴求∠EPF的大;
⑵若AP=8,求AE+AF的值;
⑶若△EFP的三個頂點(diǎn)E,F,P分別在線段AB,AD,AC上運(yùn)動,請直接寫出AP長的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫出一個過點(diǎn)(0,3),且函數(shù)值y隨自變量x的增大而減小的一次函數(shù)關(guān)系式: . (填上一個答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周,即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒.當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值;
②若點(diǎn)P、Q的速度分別為v1、v2(cm/s),點(diǎn)P、Q的運(yùn)動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,試探究a與b滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果3x=4+2x,那么x=_______,理由:根據(jù)等式的性質(zhì)______,在等式兩邊_____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com