填空,完成下列說理過程.
如圖,BD平分∠ABC交AC于點D,∠C=∠DEB=90°,那么∠CDB與∠EDB相等嗎?請說明理由.
解:因為∠1+∠CDB+∠C=180°,且∠C=90°,
所以∠1+∠CDB=90°.
因為∠2+∠EDB+∠DEB=180°,且∠DEB=90°,
所以∠2+∠EDB=90°.
因為BD平分∠ABC,
根據(jù)
角平分線定義
角平分線定義
,
所以∠1
=
=
∠2.
根據(jù)
等角的余角相等
等角的余角相等

所以∠CDB=∠EDB.
分析:仔細閱讀整個解題過程,前后結合寫出判斷依據(jù)即可.
解答:解:根據(jù)角平分線的定義可得出∠1=∠2;
根據(jù)等角的余角相等可得出:∠CDB=∠EDB;
故答案為:角平分線定義;等角的余角相等.
點評:本題考查了余角和補角的知識及角平分線的定義,對于此類題目,關鍵是通讀整個過程,然后作出判斷.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、填空,完成下列說理過程.
如圖,DP平分∠ADC交AB于點P,∠DPC=90°,如果∠1+∠3=90°,那么∠2和∠4相等嗎?說明理由.
解:因為DP平分∠ADC,
根據(jù)
角平分線定義
,
所以∠3=∠
4

因為∠APB=
180°
°,且∠DPC=90°,
所以∠1+∠2=90°.
又因為∠1+∠3=90°,
根據(jù)
等角的余角相等
,
所以∠2=∠3
所以∠2=∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

填空,完成下列說理過程
如圖,AB、CD被CE所截,點A在CE上,如果AF平分∠CAB交CD于F,并且∠1=∠3,那么AB與CD平行嗎?請說明理由.
解:因為AF平分∠CAB(已知),
所以∠1=∠
2
2
角平分線的定義
角平分線的定義
).
又因為∠1=∠3(已知),
所以
∠2=∠3
∠2=∠3
(等量代換).
所以AB∥CD(
內(nèi)錯角相等,兩直線平行
內(nèi)錯角相等,兩直線平行
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(8分)填空,完成下列說理過程

如圖,AB、CD被CE所截,點A在CE上,如果AF平分∠CAB交CD于F,并且∠1=∠3,那么AB與CD平行嗎?請說明理由.

解:AB與CD會平行,理由是:

 AF平分∠CAB(已知),

∠1=∠    (         )

∠1=∠3(已知),

            (等量代換).

AB∥CD(                 ).

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年福建省洛江市初一上學期期末考試數(shù)學卷 題型:解答題

(8分)填空,完成下列說理過程
如圖,AB、CD被CE所截,點A在CE上,如果AF平分∠CAB交CD于F,并且∠1=∠3,那么AB與CD平行嗎?請說明理由.
解:AB與CD會平行,理由是:
 AF平分∠CAB(已知),
∠1=∠   (         )
∠1=∠3(已知),
            (等量代換).
AB∥CD(                 ).

查看答案和解析>>

同步練習冊答案