【題目】如圖,一艘巡邏艇航行至海面B處時,得知正北方向上距B20海里的C處有一漁船發(fā)生故障,就立即指揮港口A處的救援艇前往C處營救.已知C處位于A處的北偏東45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之間的距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù))(  )

A. 7.3海里B. 10.3海里C. 17.3海里D. 27.3海里

【答案】B

【解析】

ADBC,垂足為D,設(shè)CDx,利用解直角三角形的知識,可得出AD,繼而可得出BD,結(jié)合題意BCCD+BD20海里可得出方程,解出x的值后即可得出答案.

ADBC,垂足為D,

由題意得,∠ACD45°,∠ABD30°,

設(shè)CDx,在RtACD中,可得ADx

RtABD中, BD=x,

又∵BC20,即x+x20

解得:x101

AC10.3(海里),

即:A、C之間的距離為10.3海里,

故選B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫半圓,交直線l于點P1,交x軸正半軸于點O2,由弦P1O2圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4,由弦P3O4圍成的弓形面積記為S3按此做法進行下去,其中S2018的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在RtABC中,∠ABC90°,BF為斜邊上的高,在射線AB上有點D,連接DF,作∠DFE90°,FE交射線BC于點E

(問題發(fā)現(xiàn))如圖1所示,如果ABCB,則DFEF的數(shù)量關(guān)系為DF   EF(選填>,<,=)

(類比探究)如圖2所示,如果改變RtABC中兩直角邊的比例,使得AB2BC,則DFEF還存在①中的關(guān)系嗎?

(拓展延伸)如圖3所示,在RtABC中,如果已知BC,AB3,EF,試求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是弧AB的中點,弦CDAB相交于E

1)若∠AOD45°,求證:CEED;(2)若AEEO,求tanAOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學小組為了測量假山的高度DE,在公園找了一水平地面,在A處測得建筑物點D(即山頂)的仰角為35°,沿水平方向前進20米到達B點,測得建筑物頂部C點的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx2x軸交于點A,以OA為斜邊在x軸上方作等腰直角三角形OAB,將OAB沿x軸向右平移,當點B落在直線yx2上時,則OAB平移的距離是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸的一個交點坐標,頂點A的坐標為.直線x軸于點B,交y軸于點C,與拋物線的對稱軸交于點DEy軸上的一個動點.

1)求這條拋物線的解析式和點D的坐標;

2)若以C、DE為頂點的三角形與ACD相似,求點E的坐標;

3)若點E關(guān)于直線BC的對稱點M恰好落在拋物線上,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某景區(qū)門票價格為80元/人,景區(qū)為吸引游客,對門票價格進行動態(tài)管理,非節(jié)假日打a折(如打2折,即是按原價的20%出售),節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費用為y元,非節(jié)假日門票費用y1(元)及節(jié)假日門票費用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.

1a   ,b   ;

2)直接寫出y1、y2x之間的函數(shù)關(guān)系式;

3)一公司準備安排公司50名職工在“五一”假期時到此景區(qū)春游,而公司接到任務(wù)有一部分職工在“五一”當天需要加班,只能安排他們延期(非節(jié)假日)游玩,公司根據(jù)安排,春游期間除去其他費用,能提供的門票費用不超過3040元,那么公司至少安排多少人提前(五一期間)春游?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD 中,AD=4cm,AB=6cm,動點 E BA運動,速度為每秒2cm;同時,動點F CB運動,速度為每秒3cm;任意一點到達終點后,兩點都停止運動。連接CEDF交于點P,連接BP

1)求證:△EBC FCD

2BP最小值是多少?此時點F運動了多少秒?

3)在該運動過程中, tanPAD的最大值是多少?

查看答案和解析>>

同步練習冊答案