若有二次函數(shù)y=ax2+c,當(dāng)x取x1,x2(x1≠x2)時(shí),函數(shù)值相等,則當(dāng)x=x1+x2時(shí),函數(shù)值為( )
A.a(chǎn)+c
B.a(chǎn)-c
C.-c
D.c
【答案】分析:先找出二次函數(shù)y=ax2+c的對(duì)稱軸是y軸,再找x=0時(shí)的函數(shù)值即可.
解答:解:二次函數(shù)y=ax2+c的對(duì)稱軸是y軸,當(dāng)x取x1,x2(x1≠x2)時(shí),函數(shù)值相等,即以x1,x2為橫坐標(biāo)的點(diǎn)關(guān)于y軸對(duì)稱,則x1+x2=0,此時(shí)函數(shù)值為y=ax2+c=0+c=c.
故選D.
點(diǎn)評(píng):解答此題要熟悉二次函數(shù)y=ax2+c的對(duì)稱軸為y軸,且據(jù)此求出x=x1+x2時(shí)函數(shù)的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離為
13
時(shí),求出此二次函數(shù)的解析式;
(3)若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為
3
13
2
?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•松北區(qū)一模)已知矩形ABCD的周長(zhǎng)為12,E、F、G、H為矩形ABCD的各邊中點(diǎn),若AB=x,四邊形EFGH的面積為y.
(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計(jì)算當(dāng)x為何值時(shí),y最大,并求出最大值.
(參考公式:當(dāng)x=-
b
2a
時(shí),二次函數(shù)y=ax+bx+c(a≠0)有最。ù螅┲
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實(shí)數(shù),此方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)a<0,當(dāng)二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個(gè)交點(diǎn)的距離為
13
時(shí),求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為
3
13
2
?若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

二次函數(shù)y=ax²-6ax+c(a>0)的圖像拋物線過(guò)點(diǎn)C(0,4),設(shè)拋物線的頂點(diǎn)為D。

(1)若拋物線經(jīng)過(guò)點(diǎn)(1,-6),求二次函數(shù)的解析式;

(2)若a=1時(shí),試判斷拋物線與x軸交點(diǎn)的個(gè)數(shù);

(3)如圖所示A、B是⊙P上兩點(diǎn),AB=8,AP=5。且拋物線過(guò)點(diǎn)A(x1,y1),B(x2,y2),并有AD=BD。設(shè)⊙P上一動(dòng)點(diǎn)E(不與A、B重合),且∠AEB為銳角,若<a≤1時(shí),請(qǐng)判斷∠AEB與∠ADB的大小關(guān)系,并說(shuō)明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年貴州省黔東南州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•黔東南州)已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式;
(3)若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案