分析 (1)根據(jù)題意得出各式之間變化規(guī)律進(jìn)而得出答案;
(2)首先找出有理化因式進(jìn)而化簡(jiǎn)求出答案;
(3)直接將各式化簡(jiǎn)進(jìn)而求出答案.
解答 解:(1)①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$;…
第n個(gè)等式:$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$;
故答案為:$\sqrt{n+1}$-$\sqrt{n}$;
(2)$\frac{1}{2\sqrt{3}+\sqrt{11}}$=$\frac{\sqrt{12}-\sqrt{11}}{(\sqrt{12}+\sqrt{11})(\sqrt{12}-\sqrt{11})}$=$\sqrt{12}$-$\sqrt{11}$=2$\sqrt{3}$-$\sqrt{11}$;
(3)$\frac{1}{{1+\sqrt{2}}}+\frac{1}{{\sqrt{2}+\sqrt{3}}}+\frac{1}{{\sqrt{3}+2}}+…+\frac{1}{{\sqrt{2014}+\sqrt{2015}}}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{3}$-2+…+$\sqrt{2015}$-$\sqrt{2014}$
=-1+$\sqrt{2015}$.
點(diǎn)評(píng) 此題主要考查了分母有理化,正確化簡(jiǎn)二次根式是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}x$ | B. | $\frac{4}{3}xy$ | C. | $-\frac{4}{3}x$ | D. | $-\frac{4}{3}x{y^{10}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com