分析 (1)要證明∠BAC=∠DAC,只需證明利用SSS證明△ABC≌△ADC即可;要證明∠AFD=∠CFE先證明△ABF≌△ADF得到∠AFD=∠AFB,再結(jié)合∠AFB=∠AFD
即可得到結(jié)論;
(2)要證明四邊形ABCD是菱形需要證明四條邊相等,證明出∠CAD=∠ACD,即可得到AD=CD,結(jié)合題干條件即可得到結(jié)論.
解答 (1)證明:在△ABC和△ADC中,
$\left\{\begin{array}{l}{AB=AD}\\{BC=DC}\\{AC=AC}\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
在△ABF和△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠BAF=∠DAF}\\{AF=AF}\end{array}\right.$,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵∠AFB=∠AFD,
∴∠AFD=∠CFE;
(2)證明:∵AB∥CD,
∴∠BAC=∠ACD,
又∵∠BAC=∠DAC,
∴∠CAD=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=BC=CD=AD,
∴四邊形ABCD是菱形.
點(diǎn)評(píng) 本題主要考查了菱形的判定與全等三角形的判定與性質(zhì)的知識(shí),解答(1)問的關(guān)鍵是利用全等三角形的性質(zhì)求出∠AFD=∠AFB,解答(2)問的關(guān)鍵是掌握四邊相等的四邊形是菱形,此題難度一般.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 外離 | B. | 外切 | C. | 相交 | D. | 內(nèi)切 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com