已知一拋物線經(jīng)過(guò)(0,0),(1,1)兩點(diǎn),且解析式的二次項(xiàng)系數(shù)為
>0).
【小題1】當(dāng)時(shí),求該拋物線的解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo);
【小題2】已知點(diǎn)(0,1),若拋物線與射線相交于點(diǎn),與軸相交于點(diǎn)(異于原點(diǎn)),當(dāng)在什么范圍內(nèi)取值時(shí),的值為常數(shù)?當(dāng)在什么范圍內(nèi)取值時(shí),的值為常數(shù)?
【小題3】若點(diǎn),)在拋物線上,則稱點(diǎn)為拋物線的不動(dòng)點(diǎn).將這條拋物線進(jìn)行平移,使其只有一個(gè)不動(dòng)點(diǎn),此時(shí)拋物線的頂點(diǎn)是否在直線上,請(qǐng)說(shuō)明理由.


【小題1】設(shè)該拋物線的解析式為,
∵拋物線經(jīng)過(guò)(0,0)、(1,1)兩點(diǎn),
,解得.
∴該拋物線的解析式為 ………………………………………1分
(Ⅰ)當(dāng)時(shí),該拋物線的解析式為  …………………………2分
.
該拋物線的頂點(diǎn)坐標(biāo)為(1,1)            . ……………………………………3分
【小題2】∵點(diǎn)軸上,∴點(diǎn)的縱坐標(biāo)為0.
當(dāng)時(shí),有,解得,.
∵點(diǎn)異于原點(diǎn),∴點(diǎn)的坐標(biāo)為(,0).∴ ………………4分
∵點(diǎn)在射線上,∴點(diǎn)的縱坐標(biāo)為1.
當(dāng)時(shí),有,
解得,.
點(diǎn)的坐標(biāo)為(1,1)或(,1)           . ……………………………5分
當(dāng)點(diǎn)的坐標(biāo)為(1,1)時(shí),重合,此時(shí),.
的值都是常數(shù)2.
當(dāng)點(diǎn)的坐標(biāo)為(,1)時(shí),
若點(diǎn)在點(diǎn)右側(cè),此時(shí)>1,.
,.
若點(diǎn)在點(diǎn)左側(cè),此時(shí)0<<1,.
,.
∴當(dāng)0<≤1時(shí),的值是常數(shù)2.  ..………………………………6分
當(dāng)≥1時(shí),的值是常數(shù)2.     ……………………………………7分
【小題3】設(shè)平移后的拋物線的解析式為,
由不動(dòng)點(diǎn)的定義,得方程:,           ………………8分
.
∵平移后的拋物線只有一個(gè)不動(dòng)點(diǎn),∴此方程有兩個(gè)相等的實(shí)數(shù)根.
∴判別式,              .…………………9分
,.
∴頂點(diǎn)(,)在直線上.      …………………………………10分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系xoy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2精英家教網(wǎng),OB=4,現(xiàn)將Rt△AOB繞著直角頂點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過(guò)C、D、B三點(diǎn).
(1)求這條拋物線的解析式;
(2)連接DB,P是線段BC上一動(dòng)點(diǎn)(P不與B、C重合),過(guò)點(diǎn)P作PE∥BD交CD于E,則當(dāng)△DEP面積最大時(shí),求PE的解析式;
(3)作點(diǎn)D關(guān)于此拋物線對(duì)稱軸的對(duì)稱點(diǎn)F,連接CF交對(duì)稱軸于點(diǎn)M,拋物線上一動(dòng)點(diǎn)R,x軸上一動(dòng)點(diǎn)Q,則在拋物線上是否存在點(diǎn)R,x軸上是否存在點(diǎn)Q,使得以C、M、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出Q點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•紅橋區(qū)二模)已知一拋物線經(jīng)過(guò)O(0,0),B(1,1)兩點(diǎn),且解析式的二次項(xiàng)系數(shù)為-
1
a
(a>0).
(Ⅰ)當(dāng)a=1時(shí),求該拋物線的解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo);
(Ⅱ)已知點(diǎn)A(0,1),若拋物線與射線AB相交于點(diǎn)M,與x軸相交于點(diǎn)N(異于原點(diǎn)),當(dāng)a在什么范圍內(nèi)取值時(shí),ON+BM的值為常數(shù)?當(dāng)a在什么范圍內(nèi)取值時(shí),ON-BM的值為常數(shù)?
(Ⅲ)若點(diǎn)P(t,t)在拋物線上,則稱點(diǎn)P為拋物線的不動(dòng)點(diǎn).將這條拋物線進(jìn)行平移,使其只有一個(gè)不動(dòng)點(diǎn),此時(shí)拋物線的頂點(diǎn)是否在直線y=x-
a
4
上,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一拋物線經(jīng)過(guò)O(0,0),B(1,1)兩點(diǎn),且解析式的二次項(xiàng)系數(shù)為-數(shù)學(xué)公式(a>0).
(Ⅰ)當(dāng)a=1時(shí),求該拋物線的解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo);
(Ⅱ)已知點(diǎn)A(0,1),若拋物線與射線AB相交于點(diǎn)M,與x軸相交于點(diǎn)N(異于原點(diǎn)),當(dāng)a在什么范圍內(nèi)取值時(shí),ON+BM的值為常數(shù)?當(dāng)a在什么范圍內(nèi)取值時(shí),ON-BM的值為常數(shù)?
(Ⅲ)若點(diǎn)P(t,t)在拋物線上,則稱點(diǎn)P為拋物線的不動(dòng)點(diǎn).將這條拋物線進(jìn)行平移,使其只有一個(gè)不動(dòng)點(diǎn),此時(shí)拋物線的頂點(diǎn)是否在直線y=x-數(shù)學(xué)公式上,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年湖北省黃石九中中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

已知一拋物線經(jīng)過(guò)O(0,0),B(1,1)兩點(diǎn),且解析式的二次項(xiàng)系數(shù)為-(a>0).
(Ⅰ)當(dāng)a=1時(shí),求該拋物線的解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo);
(Ⅱ)已知點(diǎn)A(0,1),若拋物線與射線AB相交于點(diǎn)M,與x軸相交于點(diǎn)N(異于原點(diǎn)),當(dāng)a在什么范圍內(nèi)取值時(shí),ON+BM的值為常數(shù)?當(dāng)a在什么范圍內(nèi)取值時(shí),ON-BM的值為常數(shù)?
(Ⅲ)若點(diǎn)P(t,t)在拋物線上,則稱點(diǎn)P為拋物線的不動(dòng)點(diǎn).將這條拋物線進(jìn)行平移,使其只有一個(gè)不動(dòng)點(diǎn),此時(shí)拋物線的頂點(diǎn)是否在直線y=x-上,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年天津市紅橋區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知一拋物線經(jīng)過(guò)O(0,0),B(1,1)兩點(diǎn),且解析式的二次項(xiàng)系數(shù)為-(a>0).
(Ⅰ)當(dāng)a=1時(shí),求該拋物線的解析式,并用配方法求出該拋物線的頂點(diǎn)坐標(biāo);
(Ⅱ)已知點(diǎn)A(0,1),若拋物線與射線AB相交于點(diǎn)M,與x軸相交于點(diǎn)N(異于原點(diǎn)),當(dāng)a在什么范圍內(nèi)取值時(shí),ON+BM的值為常數(shù)?當(dāng)a在什么范圍內(nèi)取值時(shí),ON-BM的值為常數(shù)?
(Ⅲ)若點(diǎn)P(t,t)在拋物線上,則稱點(diǎn)P為拋物線的不動(dòng)點(diǎn).將這條拋物線進(jìn)行平移,使其只有一個(gè)不動(dòng)點(diǎn),此時(shí)拋物線的頂點(diǎn)是否在直線y=x-上,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案