如圖1,已知正方形ABCD的對角線AC、BD相交于點O,E是AC上一點,連接EB,過點A作AM⊥BE,垂足為M,AM交BD于點F.
(1)求證:OE=OF;
(2)如圖2,若點E在AC的延長線上,AM⊥BE于點M,交DB的延長線于點F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

【答案】分析:(1)根據(jù)正方形的性質(zhì)對角線垂直且平分,得到OB=OA,又因為AM⊥BE,所以∠MEA+∠MAE=90°=∠AFO+∠MAE,從而求證出Rt△BOE≌Rt△AOF,得到OE=OF.
(2)根據(jù)第一步得到的結(jié)果以及正方形的性質(zhì)得到OB=OA,再根據(jù)已知條件求證出Rt△BOE≌Rt△AOF,得到OE=OF.
解答:(1)證明:∵四邊形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.

(2)解:OE=OF成立.
證明:∵四邊形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴Rt△BOE≌Rt△AOF.
∴OE=OF.
點評:本題就是一個考查正方形的性質(zhì)以及三角形全等的判定問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.

(1)試猜想AE與GC有怎樣的位置關(guān)系,并證明你的結(jié)論;
(2)將正方形DEFG繞點D按順時針方向旋轉(zhuǎn),使點E落在BC邊上,如圖2,連接AE和GC.你認(rèn)為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作圖題
(1)如圖1,已知?ABCD兩邊長分別是1和2,一個內(nèi)角為60°,將?ABCD剪一刀成兩部分,并拼成一個等腰三角形.要求在原圖上畫出剪切線和組成的等腰三角形,并填寫等腰三角形的周長(本題不限作圖工具)
圖1,周長=
6
6
                      
圖2,周長=
2+2
17
2+2
17

(2)如圖2,已知正方形ABCD邊長為2,將正方形剪兩刀成三部分,并拼成一個等腰非直角三角形,要求在原圖上畫出剪切線和拼成的三角形,并填出等腰三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•孝感)如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點E滑動到某處時,點F恰好落在拋物線y=-x2+x+1上,求此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知正方形ABCD與正方形DEFG,點A、D、E三點共線,則S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
(2)如圖2,將圖1中正方形DEFG繞點D,逆時針轉(zhuǎn)到如圖的位置,則S△ADG
=
=
S△DCE(填“>”,“<”或“=”)
請說明理由.
(3)如圖3,以△ABC三邊向外作三個正方形,分別為正方形AEDC、正方形CFGB正方形ABHK,并且△ABC的邊AC長為5,邊AB長為4,則三角形AKE,三角形CDF,三角形BGH的面積和的最大值為
30
30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知正方形OABC的邊長為4,等腰直角三角板OEF的直角邊OE、OF分別在OA、OC上,且OE=2.將三角板OEF繞點O逆時針旋轉(zhuǎn)至OE1F1的位置,旋轉(zhuǎn)角為α,連接CF1、AE1
(1)請在圖2中畫出三夾板OEF逆時針旋轉(zhuǎn)90°時的圖形,并直接判斷此時△OAE1與△OCF1是否全等.
(2)當(dāng)0°<α<90°時,∠OAE1與∠OCF1是否總有上述關(guān)系并加以證明;
(3)若三角板OEF繞O點逆時針旋轉(zhuǎn)一周,是否存在某一位置,使得OE1∥CF1?若存在,請求出旋轉(zhuǎn)角α的度數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案