【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形,OA =10,sin∠AOB =,反比例函數(shù)y =kx-1(k>0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F.
(1)求反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)F為BC的中點(diǎn),求△OBF的面積.
【答案】(1)y= (x>0);(2)18
【解析】(1)先過點(diǎn)A作AH⊥OB,根據(jù)sin∠AOB=,OA=10,求出AH和OH的值,從而得出A點(diǎn)坐標(biāo),再把它代入反比例函數(shù)中,求出k的值,即可求出反比例函數(shù)的解析式;
(2)過點(diǎn)F作FM⊥x軸于M,由四邊形AOBC是平行四邊形得∠AOB=∠FBM,故sin∠FBM=,因點(diǎn)F為BC的中點(diǎn),所以BF=5,得FM=4,BM=3,得S△BFM=6,因?yàn)辄c(diǎn)F在反比例函數(shù)圖象上,故S△OFM=24,根據(jù)S△OBF=S△OFM-S△BFM可求出結(jié)果.
(1)過點(diǎn)A作AH⊥OB于H
∵sin∠AOB=,OA=10
∴AH=8,OH=6
∴A點(diǎn)坐標(biāo)為(6,8)
∵反比例函數(shù)y=kx(k>0)過(3,4)
可得:k=48
∴反比例函數(shù)解析式:y= (x>0)
(2)過點(diǎn)F作FM⊥x軸于M
∵四邊形AOBC是平行四邊形,
∴AO∥BC,AO=CB=10 ∴∠AOB=∠FBM
∵sin∠AOB=
∴sin∠FBM=
∵點(diǎn)F為BC的中點(diǎn),
∴BF=5,
∴FM=4,BM=3,
∴S△BFM=6
∵F在反比例函數(shù)圖象上,
∴S△OFM=24
∴S△OBF=S△OFM-S△BFM=18
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B,F(xiàn)為圓心,大于BF的長(zhǎng)為半徑畫弧,兩弧交于一點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF.
(1)根據(jù)條件與作圖信息知四邊形ABEF是
A.非特殊的平行四邊形
B.矩形
C.菱形
D.正方形
(2)設(shè)AE與BF相交于點(diǎn)O,四邊形ABEF的周長(zhǎng)為16,BF=4,求AE的長(zhǎng)和∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F。
(1)求證:△ABE≌△CAD;(2)求∠BFD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)畫出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字6,﹣2,7的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請(qǐng)你用畫樹形圖或列表的方法,求下列事件的概率:
(1)兩次取出小球上的數(shù)字相同的概率;
(2)兩次取出小球上的數(shù)字之和大于10的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對(duì)角線,E為AB上一點(diǎn),過點(diǎn)E作EF∥AD,與AC、DC分別交于點(diǎn)G、F,H為CG的中點(diǎn),連接DE、EH、DH、FH.下列結(jié)論:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若,則3S△EDH=13S△DHC,其中結(jié)論正確的有________(填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)商經(jīng)銷一種暢銷玩具,每件進(jìn)價(jià)為18元,每月銷量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖中線段AB所示.
(1)當(dāng)銷售單價(jià)為多少元時(shí),該網(wǎng)商每月經(jīng)銷這種玩具能夠獲得最大銷售利潤(rùn)?最大銷售利潤(rùn)是多少?(銷售利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
(2)如果該網(wǎng)商要獲得每月不低于3500元的銷售利潤(rùn).那么至少要準(zhǔn)備多少資金進(jìn)貨這種玩具?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com