精英家教網 > 初中數學 > 題目詳情
(2010•來賓)已知反比例函數的圖象過點(-2,-2).
(1)求此反比例函數的關系式;
(2)過點M(4,4)分別作x、y軸的垂線,垂足分別為A、B,這兩條垂線與x、y軸圍成一個正方形OAMB(如圖),用列表法寫出在這個正方形內(包括正方形的邊和內部)且位于第一象限,橫、縱坐標都是整數的點的坐標;并求在這些點中任取一點,該點恰好在所求反比例函數圖象上的概率P.
分析:(1)設出反比例函數的解析式,把點(-2,-2)代入解析式即可求出k的值,進而得出反比例函數的解析式;
(2)用列表法寫出在這個正方形內(包括正方形的邊和內部)且位于第一象限,橫、縱坐標都是整數的點的坐標,根據反比例函數中k=xy的特點即可求出這些點中在反比例函數圖象上的點,求出其概率即可.
解答:解:(1)設反比例函數的解析式為y=
k
x
(k≠0),
∵反比例函數的圖象過點(-2,-2).
∴-2=
k
-2
,解得k=4,
∴反比例函數的解析式為:y=
4
x


(2)正方形內(包括正方形的邊和內部)且位于第一象限,橫、縱坐標都是整數的點的坐標如表所示:
縱坐標
橫坐標
0 1 2 3 4
0 (0,0) (0,1) (0,2) (0,3) (0,4)
1 (1,0) (1,1) (1,2) (1,3) (1,4)
2 (2,0) (2,1) (2,2) (2,3) (2,4)
3 (3,0) (3,1) (3,2) (3,3) (3,4)
4 (4,0) (4,1) (4,2) (4,3) (4,4)
∵1×4=4,2×2=4,4×1=4,
∴點(1,4)、(2,2)、(4,1)在反比例函數y=
4
x
的圖象上,其概率P=
3
25
點評:本題考查的是反比例函數綜合題,涉及到用待定系數法求反比例函數的解析式及概率公式,難度適中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2010•來賓)已知|x|=2,則x=
±2
±2

查看答案和解析>>

科目:初中數學 來源: 題型:

(2010•來賓)已知⊙O1與⊙O2相切,⊙O1的半徑為4,圓心距為10,則⊙O2的半徑是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2010•來賓)已知在Rt△ABC中,∠C=90°,點E在邊AB上,且AE=AC,∠BAC的平分線AD與BC交于點D.
(1)根據上述條件,用尺規(guī)在圖中作出點E和∠BAC的平分線AD(不要求寫出作法,但要保留作圖痕跡);
(2)證明:DE⊥AB.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2010•來賓)已知矩形OABC的頂點O在平面直角坐標系的原點,邊OA、OC分別在x、y軸的正半軸上,且OA=3cm,OC=4cm,點M從點A出發(fā)沿AB向終點B運動,點N從點C出發(fā)沿CA向終點A運動,點M、N同時出發(fā),且運動的速度均為1cm/秒,當其中一個點到達終點時,另一點即停止運動.設運動的時間為t秒.
(1)試用t表示點N的坐標,并指出t的取值范圍;
(2)試求出多邊形OAMN的面積S與t的函數關系式;
(3)是否存在某個時刻t,使得點O、N、M三點同在一條直線上?若存在,則求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案