如圖,等腰梯形ABCD,ADBC,BD平分∠ABC,∠A=120°.若梯形的周長(zhǎng)為10,則AD的長(zhǎng)為_(kāi)_____.
∵ADBC,BD平分∠ABC,
∴∠ABD=∠CBD,∠ADB=∠CBD,
∴∠ABD=∠ADB,
∴AD=AB,
∵∠A=120°,
∴∠ABD=∠CBD=30°,
∵梯形ABCD是等腰梯形,
∴∠C=∠ABC=60°,AB=CD,
∴∠BDC=180°-∠CBD-∠C=90°,AB=CD=AD,
∴BC=2CD=2AD,
∵梯形的周長(zhǎng)為10,
∴AB+BC+CD+AD=10,
即5AD=10,
∴AD=2.
故答案為:2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,在梯形ABCD中,ADBC,∠ABC=90°,BC=2AD,點(diǎn)E、F分別是BC和DC的中點(diǎn),連接AE、EF和BD,AE和BD相交于點(diǎn)G.
(1)求證:四邊形AECD是平行四邊形;
(2)求證:四邊形EFDG是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,AD=4,DC=5,BC=11,梯形的高為4,動(dòng)點(diǎn)M從B點(diǎn)出發(fā)沿線(xiàn)段BC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿CDA以每秒2單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng).若M,N兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)t為何值時(shí),四邊形ABMN為平行四邊形;
(2)t為何值時(shí),四邊形CDNM為等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,ADBC,∠A=120°,AD=8,BC=14,則梯形的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等腰梯形的周長(zhǎng)為60,腰長(zhǎng)為8,對(duì)角線(xiàn)長(zhǎng)為24,則連接兩腰中點(diǎn)與一底中點(diǎn)的線(xiàn)段組成的三角形的周長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在梯形ABCD中,ADBC.AB=DC=AD=6,∠ABC=60°,點(diǎn)E、F分別在AD、DC上(點(diǎn)E與A、D不重合);且∠BEF=120°,設(shè)AE=x,DF=y.
(1)求BC邊的長(zhǎng);
(2)求出y關(guān)于x的函數(shù)關(guān)系;
(3)利用配方法求x為何值時(shí),y有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖;在等腰梯形ABCD中,AD=2,BC=4,DC=
5
,高DF=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等腰△ABC中,AB=AC=13,BC=10
(1)如圖①,△ABC的面積=______,腰AC上的高BD=______;
(2)如圖②,P是底邊BC上任意一點(diǎn),PE⊥AB于E,PF⊥AC于F,連接AP,不難發(fā)現(xiàn):△ABP的面積+△ACP的面積=△ABC的面積,據(jù)此式,你能求出PE+PF等于多少嗎?你有什么發(fā)現(xiàn)?
(3)如圖③四邊形BCGH是形狀、大小一定的等腰梯形,點(diǎn)P是下底BC上一動(dòng)點(diǎn),試問(wèn):點(diǎn)P到兩腰的距離之和是否為一定值?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,若S△AOD:S△ACD=1:3,則S△AOD:S△BOC=______;若S△AOD=1,則梯形ABCD的面積為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案