如圖,O是△ABC的外接圓的圓心,∠ABC=60°,BF,CE分別是AC,AB邊上的高且交于點H,CE交⊙O于M,D,G分別在邊BC,AB上,且BD=BH,BG=BO,下列結(jié)論:①∠ABO=∠HBC;②AB•BC=2BF•BH;③BM=BD;④△GBD為等邊三角形,其中正確結(jié)論的序號是


  1. A.
    ①②
  2. B.
    ①③④
  3. C.
    ①②④
  4. D.
    ①②③④
D
分析:①,延長AO交圓于點N,連接BN,可證明∠ABO=∠HBC.因此①正確;
②原式可寫成=,無法直接用相似來求出,那么可通過相等的比例關(guān)系式來進(jìn)行轉(zhuǎn)換,不難發(fā)現(xiàn)三角形BEC中,∠ABC=60°,那么BC和BE存在倍數(shù)關(guān)系,即BC=2BE,因此如果證得=,可發(fā)現(xiàn)這個比例關(guān)系式正好是相似三角形BEH和BAF的兩組對應(yīng)線段,因此本題的結(jié)論也是正確的.
③要證MB=BD,先看與BD相等的線段有哪些,不難通過相似三角形ABN和BFC(一組直角,∠OBA=∠OAB=∠FBC)得出,將這個結(jié)論和②的結(jié)論進(jìn)行置換即可得出:BD=BO=BH=BG,因此可證MB和圓的半徑相等即可得出BM=BD的結(jié)論.如果連接NC,在三角形ANC中∠ANC=∠ABC=60°,因此AN=2NC,NC就是半徑的長.通過相似三角形BME和CAE可得出,而在直角三角形BEC中,BE:EC=tan30°,而在直角三角形ANC中,NC:AC=tan30°,因此,即可得出BM=NC=BO=BD.因此該結(jié)論也成立.
④在③中已經(jīng)得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等邊三角形.本結(jié)論也成立.
因此四個結(jié)論都成立,
解答:解:①延長AO交圓于點N,連接BN,則∠ABN=90°,又∠ACB=∠N,∠ABO=∠BAO,所以∠ABO=∠HBC.因此①正確;
②原式可寫成=,∠ABC=60°,那么BC=2BE,因此=,所以本題的結(jié)論也是正確的.
③∵△ABN∽△BFC(一組直角,∠OBA=∠OAB=∠FBC)∴,BD=BO=BH=BG,BM=BD.
連接NC,在三角形ANC中∠ANC=∠ABC=60°,∴AN=2NC,BE:EC=tan30°,
在直角三角形ANC中,NC:AC=tan30°,,∴BM=NC=BO=BD.
因此該結(jié)論也成立.
④在③中已經(jīng)得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等邊三角形.本結(jié)論也成立.
因此四個結(jié)論都成立,
故選D.
點評:本題中線段較多,要找準(zhǔn)和已知,所求的條件相關(guān)的線段,然后逐一梳理思路,通過相似三角形來進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,∠ADC=60°,點C′與點C關(guān)于直線AD對稱,若BC=6cm,則點B與點C′之間的距離為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,已知∠B=62°,則∠CAO的度數(shù)是( 。
A、28°B、30°C、31°D、62°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,AD是△ABC的角平分線,∠B=60°,E,F(xiàn)分別在AC、AB上,且AE=AF,∠CDE=∠BAC,那么,圖中長度一定與DE相等的線段共有
3
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O是△ABC的外接圓,AB是直徑,若∠B=50°,則∠A等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD是△ABC的外接圓直徑,AD=
2
,∠B=∠DAC,則AC的值為
1
1

查看答案和解析>>

同步練習(xí)冊答案