【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖.(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào))
根據(jù)以上信息,解答下列問(wèn)題:
(1)該班共有 名學(xué)生,其中穿175型校服的學(xué)生有 名;
(2)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺部分補(bǔ)充完整;
(3)該班學(xué)生所穿校服型號(hào)的眾數(shù)為 型,中位數(shù)為 型.
【答案】(1)50人 10人 (3) 眾數(shù):165和170 中位數(shù):170
【解析】
試題(1)利用總?cè)藬?shù)=165型的人數(shù)÷對(duì)應(yīng)的百分比,175型校服的學(xué)生=總?cè)藬?shù)×175型校服的學(xué)生的百分比求解即可;
(2)先求出185型的學(xué)生人數(shù),再補(bǔ)全統(tǒng)計(jì)圖即可,
(3)利用眾數(shù),中位數(shù)的定義求解即可.
試題解析:((1)15÷30%=50(名),50×20%=10(名),
答:該班共有50名學(xué)生,其中穿175型校服的學(xué)生有10名;
故答案為50,10.
(2)185型的學(xué)生人數(shù)為:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),
補(bǔ)全統(tǒng)計(jì)圖如圖所示;
(3)該班學(xué)生所穿校服型號(hào)的眾數(shù)為165,170,中位數(shù)為170.
故答案為165,170,170.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…分別在x軸上,點(diǎn)B1,B2,B3,…分別在直線y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,則點(diǎn)A2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為),圍成中間隔有一道籬笆(平行于)的矩形花圃.設(shè)花圃的一邊為.
則________(用含的代數(shù)式表示),矩形的面積________(用含的代數(shù)式表示);
如果要圍成面積為的花圃,的長(zhǎng)是多少?
將中表示矩形的面積的代數(shù)式通過(guò)配方,問(wèn):當(dāng)等于多少時(shí),能夠使矩形花圃面積最大,最大的面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BE是△ABC的外接圓O的直徑,CD是△ABC的高.
(1)求證:AC·BC=BE·CD;
(2)已知CD=6、AD=3、BD=8,求⊙O的直徑BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖).已知拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)B(0,),頂點(diǎn)為C,點(diǎn)D在其對(duì)稱軸上且位于點(diǎn)C下方,將線段DC繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)C落在拋物線上的點(diǎn)P處.
(1)求這條拋物線的表達(dá)式;
(2)求線段CD的長(zhǎng);
(3)將拋物線平移,使其頂點(diǎn)C移到原點(diǎn)O的位置,這時(shí)點(diǎn)P落在點(diǎn)E的位置,如果點(diǎn)M在y軸上,且以O、D、E、M為頂點(diǎn)的四邊形面積為8,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,,將繞點(diǎn)按順時(shí)針旋轉(zhuǎn)得到,連接,,它們交于點(diǎn),
①求證:.
②當(dāng),求的度數(shù).
③當(dāng)四邊形是菱形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在探究三角形的內(nèi)角和的小組活動(dòng)中,小穎作如下輔助線:延長(zhǎng)△ABC的邊BC到D,作CE∥AB,于是小穎得出三角形內(nèi)角和的證明方法.
(1)求證:∠A+∠B+∠ACB=180°;
(2)如果CE平分∠ACD,AC=5,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為40和28,則△EDF的面積為( 。
A. 12 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB的垂直平分線DE交AC于點(diǎn)E,垂足是D,F是BC上一點(diǎn),EF平分∠AFC,EG⊥AF于點(diǎn)G.
(1)試判斷EC與EG,CF與GF是否相等;(直接寫(xiě)出結(jié)果,不要求證明)
(2)求證:AG=BC;
(3)若AB=5,AF+BF=6,求EG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com