如圖,正方形ABCD的邊長為4cm,點P是BC邊上不與點B、C重合的任意一點,連接AP,過P點作PQ⊥AP交DC于Q點,設(shè)BP的長為xcm,CQ的長為ycm.
(1)求y與x之間的函數(shù)關(guān)系式并寫出x的取值范圍;
(2)求點P在BC邊上運動的過程中y的最大值.

【答案】分析:(1)由題意知:PQ⊥AP,即:∠APB+∠QPC=90°,∠BAP+∠APB=180°-∠B=90°,所以∠QPC=∠BAP,又∠B=∠C,即:△ABP∽△PCQ,由相似三角形的性質(zhì)可得:=,CQ=×BP,又BP=x,PC=BC-BP=4-x,AB=4,將其代入該式求出CQ的值即可;
(2)利用“配方法”求該函數(shù)的最大值.
解答:解:如上圖所示:
(1)∵四邊形ABCD是正方形,
∴∠B=∠C=90°
∵PQ⊥AP,
∴∠APB+∠QPC=90°
∠APB+∠BAP=90°
∴∠BAP=∠QPC
∴△ABP∽△PCQ
=,即=
∴y=+x(0<x<4);

(2)∵y=+x
∴y=+1
∴當(dāng)x=2時,y有最大值1cm.
點評:本題主要考查正方形的性質(zhì)和二次函數(shù)的應(yīng)用,關(guān)鍵在于理解題意運用三角形的相似性質(zhì)求出y與x之間的函數(shù)關(guān)系,求最大值時,運用到“配方法”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案