【題目】拋物線y= +x+m的頂點(diǎn)在直線y=x+3上,過點(diǎn)F(﹣2,2)的直線交該拋物線于點(diǎn)M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),MA⊥x軸于點(diǎn)A,NB⊥x軸于點(diǎn)B.
(1)先通過配方求拋物線的頂點(diǎn)坐標(biāo)(坐標(biāo)可用含m的代數(shù)式表示),再求m的值;
(2)設(shè)點(diǎn)N的橫坐標(biāo)為a,試用含a的代數(shù)式表示點(diǎn)N的縱坐標(biāo),并說明NF=NB;
(3)若射線NM交x軸于點(diǎn)P,且PAPB= ,求點(diǎn)M的坐標(biāo).
【答案】
(1)
解:y= x2+x+m= (x+2)2+(m﹣1)
∴頂點(diǎn)坐標(biāo)為(﹣2,m﹣1)
∵頂點(diǎn)在直線y=x+3上,
∴﹣2+3=m﹣1,
得m=2
(2)
解:過點(diǎn)F作FC⊥NB于點(diǎn)C,
∵點(diǎn)N在拋物線上,
∴點(diǎn)N的縱坐標(biāo)為: a2+a+2,
即點(diǎn)N(a, a2+a+2)
在Rt△FCN中,F(xiàn)C=a+2,NC=NB﹣CB= a2+a,
∴NF2=NC2+FC2=( a2+a)2+(a+2)2,
=( a2+a)2+(a2+4a)+4,
而NB2=( a2+a+2)2,
=( a2+a)2+(a2+4a)+4
∴NF2=NB2,
NF=NB
(3)
解:連接AF、BF,
由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,
∴∠MAF=∠MFA,
∵M(jìn)A⊥x軸,NB⊥x軸,
∴MA∥NB,
∴∠AMF+∠BNF=180°
∵△MAF和△NFB的內(nèi)角總和為360°,
∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,
∵∠MAB+∠NBA=180°,
∴∠FBA+∠FAB=90°,
又∵∠FAB+∠MAF=90°,
∴∠FBA=∠MAF=∠MFA,
又∵∠FPA=∠BPF,
∴△PFA∽△PBF,
∴ ,PF2=PA×PB= ,
過點(diǎn)F作FG⊥x軸于點(diǎn)G,在Rt△PFG中,
PG= = ,
∴PO=PG+GO= ,
∴P(﹣ ,0)
設(shè)直線PF:y=kx+b,把點(diǎn)F(﹣2,2)、點(diǎn)P(﹣ ,0)代入y=kx+b,
解得k= ,b= ,
∴直線PF:y= x+ ,
解方程 x2+x+2= x+ ,
得x=﹣3或x=2(不合題意,舍去),
當(dāng)x=﹣3時(shí),y= ,
∴M(﹣3, ).
【解析】(1)利用配方法將二次函數(shù)整理成頂點(diǎn)式即可,再利用點(diǎn)在直線上的性質(zhì)得出答案即可;(2)首先利用點(diǎn)N在拋物線上,得出N點(diǎn)坐標(biāo),再利用勾股定理得出NF2=NC2+FC2 , 進(jìn)而得出NF2=NB2 , 即可得出答案;(3)求點(diǎn)M的坐標(biāo),需要先求出直線PF的解析式.首先由(2)的思路得出MF=MA,然后連接AF、FB,通過證明△PFA∽△PBF,利用相關(guān)的比例線段將PAPB的值轉(zhuǎn)化為PF的值,進(jìn)而求出點(diǎn)F的坐標(biāo)和直線PF的解析式,即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8,…,頂點(diǎn)依次用,,,…表示,則頂點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中C點(diǎn)坐標(biāo)為(1 ,2).
(1)寫出點(diǎn)A、B的坐標(biāo):A( , )、B( , )
(2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△A'B'C',則△A'B'C'的三個(gè)頂點(diǎn)坐標(biāo)分別是A'( , )、B'( 、 )、 C'( 、 )
(3)計(jì)算△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形.
(1)如圖(1)所示,點(diǎn)G是BC邊上任意一點(diǎn)(不與B,C兩點(diǎn)重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E.求證△ABF≌△DAE;
(2)在(1)中,線段EF與AF,BF的等量關(guān)系是____;(不需證明,直接寫出結(jié)論即可)
(3)如圖(2)所示,若點(diǎn)G是CD邊上任意一點(diǎn)(不與C,D兩點(diǎn)重合),作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,那么圖中的全等三角形是____,線段EF與AF,BF的等量關(guān)系是____.(不需證明,直接寫出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的藝術(shù)特長發(fā)展情況,某校音樂組決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動(dòng)項(xiàng)目中,你最喜歡哪一項(xiàng)活動(dòng)(每人只限一項(xiàng))”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)在這次調(diào)查中一共抽查了名學(xué)生,其中,喜歡“舞蹈”活動(dòng)項(xiàng)目的人數(shù)占抽查總?cè)藬?shù)的百分比為 , 喜歡“戲曲”活動(dòng)項(xiàng)目的人數(shù)是人;
(2)若在“舞蹈、樂器、聲樂、戲曲”活動(dòng)項(xiàng)目任選兩項(xiàng)設(shè)立課外興趣小組,請(qǐng)用列表或畫樹狀圖的方法求恰好選中“舞蹈、聲樂”這兩項(xiàng)活動(dòng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.
(1)填空:∠1= °,∠2= °;
(2)現(xiàn)把三角板繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)n°.
①如圖2,當(dāng)0<n<90,且點(diǎn)C恰好落在DG邊上時(shí),求∠1、∠2的度數(shù)(結(jié)果用含n的代數(shù)式表示);
②當(dāng)0<n<360時(shí),是否會(huì)存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,直接寫出所有n的值和對(duì)應(yīng)的那兩條垂線;如果不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com