(2008•烏蘭察布)如圖所示,AB是⊙O的直徑,AD是弦,∠DBC=∠A,OC⊥BD于點E.
(1)求證:BC是⊙O的切線;
(2)若BD=12,EC=10,求AD的長.

【答案】分析:(1)要證BC是⊙O的切線,只要證明AB⊥BC即可;
(2)易得△BEC∽△ADB,根據(jù)相似三角形的性質可得;代入數(shù)據(jù)可得答案.
解答:(1)證明:∵AB是⊙O的直徑,
∴∠D=90°,∠A+∠ABD=90°.
∵∠DBC=∠A,
∴∠DBC+∠ABD=90°,
即∠ABC=90°.
∴AB⊥BC.
∴BC是⊙O的切線.

(2)解:∵OC⊥BD,
∴∠OEB=90°,
∴OE∥AD,
∴BE=ED=BD=6.
∵∠BEC=∠D=90°,∠DBC=∠A,
∴△BEC∽△ADB,


∴AD=7.2.
點評:本題考查的是切線的判定及相似三角形的判定與性質.注意要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•烏蘭察布)兩個直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點O與E重合.
(1)Rt△AOB固定不動,Rt△CED沿x軸以每秒2個單位長度的速度向右運動,當點E運動到與點B重合時停止,設運動x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關系式;
(2)當Rt△CED以(1)中的速度和方向運動,運動時間x=2秒時,Rt△CED運動到如圖二所示的位置,若拋物線y=x2+bx+c過點A,G,求拋物線的解析式;
(3)現(xiàn)有一動點P在(2)中的拋物線上運動,試問點P在運動過程中是否存在點P到x軸或y軸的距離為2的情況?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2008•烏蘭察布)聲音在空氣中傳播的速度y(m/s)是氣溫x(℃)的一次函數(shù),下表列出了一組不同氣溫的音速:
氣溫x(℃)5101520
音速y(m/s)331334337340343
(1)求y與x之間的函數(shù)關系式;
(2)氣溫x=23℃時,某人看到煙花燃放5s后才聽到聲響,那么此人與煙花燃放地約相距多遠?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年安徽省安慶市桐城市白馬中學中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

(2008•烏蘭察布)聲音在空氣中傳播的速度y(m/s)是氣溫x(℃)的一次函數(shù),下表列出了一組不同氣溫的音速:
氣溫x(℃)5101520
音速y(m/s)331334337340343
(1)求y與x之間的函數(shù)關系式;
(2)氣溫x=23℃時,某人看到煙花燃放5s后才聽到聲響,那么此人與煙花燃放地約相距多遠?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年內蒙古烏蘭察布市中考數(shù)學試卷(解析版) 題型:解答題

(2008•烏蘭察布)兩個直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點O與E重合.
(1)Rt△AOB固定不動,Rt△CED沿x軸以每秒2個單位長度的速度向右運動,當點E運動到與點B重合時停止,設運動x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關系式;
(2)當Rt△CED以(1)中的速度和方向運動,運動時間x=2秒時,Rt△CED運動到如圖二所示的位置,若拋物線y=x2+bx+c過點A,G,求拋物線的解析式;
(3)現(xiàn)有一動點P在(2)中的拋物線上運動,試問點P在運動過程中是否存在點P到x軸或y軸的距離為2的情況?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年內蒙古烏蘭察布市中考數(shù)學試卷(解析版) 題型:解答題

(2008•烏蘭察布)聲音在空氣中傳播的速度y(m/s)是氣溫x(℃)的一次函數(shù),下表列出了一組不同氣溫的音速:
氣溫x(℃)5101520
音速y(m/s)331334337340343
(1)求y與x之間的函數(shù)關系式;
(2)氣溫x=23℃時,某人看到煙花燃放5s后才聽到聲響,那么此人與煙花燃放地約相距多遠?

查看答案和解析>>

同步練習冊答案